搜索
您的当前位置:首页正文

钯催化

来源:知库网
Chem.Rev.2007,107,133−173133Carbon−CarbonCouplingReactionsCatalyzedbyHeterogeneousPalladiumCatalystsLunxiangYinandJu¨rgenLiebscher*Institutefu¨rChemie,Humboldt-Universita¨tBerlin,Brook-Taylor-Strasse2,D-12489Berlin,GermanyReceivedJanuary16,2006Contents1.Introduction1.1.Catalysts1.2.MechanisticAspects2.SuzukiReactions2.1.PdonCarbon(Pd/C)2.1.1.InthePresenceofPhosphineLigands2.1.2.IntheAbsenceofPhosphineLigands2.1.3.Ligand-FreeSuzukiCouplinginAqueousSurfactants2.1.4.Ligand-FreeSuzukiCouplingunderMicrowaveorUltrasoundConditions2.2.PalladiumonMetalOxides2.2.1.Palladium-DopedKF/Al2O32.2.2.IronOxideNanoparticle-SupportedPd−N-HeterocyclicCarbeneComplexes2.2.3.Palladium-ContainingPerovskites2.2.4.MiscellaneousMetalOxides2.3.PdonPorousAluminosilicates2.4.PdonModifiedSilica2.5.PdonClaysandOtherInorganicMaterials3.HeckReactions3.1.PdonCarbon(Pd/C)3.2.PdonMetalOxides3.3.PdonMicroporousandMesoporousSupports3.4.PdonModifiedSilica(Organic−InorganicHybridSupport)3.5.PdonClayandOtherInorganicMaterials4.SonogashiraReactions4.1.PdonCarbon(Pd/C)4.1.1.InAnhydrousMedia4.1.2.InOrganicSolvent/WaterMixtures4.1.3.Copper-FreeandLigand-FreeSonogashiraCoupling4.2.PdonMetalOxides4.3.PdonMicroporousandMesoporousSupports4.4.PdonModifiedSilica4.5.PdonClayandOtherInorganicMaterials5.Stille,Fukuyama,andNegishiReactions5.1.StilleReactions5.1.1.PdonCarbon(Pd/C)5.1.2.PalladiumonKF/Al2O35.1.3.PdonModifiedSilica(SiO2/TEG/Pd)*E-mail:liebscher@chemie.hu-berlin.de.

1331351361371371371381401401411411421431431431441451461461491501511531541541541551571581581591591591591591591595.2.FukuyamaReactions5.2.1.PdonCarbon(Pd/C)5.2.2.Pd(OH)2onCarbon(Perlman’sCatalyst)5.3.Pd/C-CatalyzedNegishiReactions6.Ullmann-TypeCouplingReactions6.1.Pd/C-CatalyzedAryl−ArylCoupling6.2.Pd/C-CatalyzedHomocouplingofVinylHalides6.3.Pd/C-CatalyzedIntramolecularCouplingofArylandVinylHalides7.HomocouplingofArylboronicAcids,Pyridines,andAlkynes7.1.Pd/C-CatalyzedHomocouplingofArylboronicAcids(Suzuki-TypeHomocoupling)7.2.Pd/C-CatalyzedHomocouplingofPyridines7.3.Pd/C-CatalyzedHomocouplingofAlkynes(Glaser-TypeCoupling)8.OtherCouplingReactions8.1.CyanationofArylBromides8.2.Carbonylations8.3.R-ArylationsofDiethylMalonate8.4.ArylationsofAromaticCompounds8.5.Allylations8.6.IntermolecularHeck-TypeCoupling9.PdonSolidSupportinTandemReactions9.1.SonogashiraCouplinginTandemReactions9.2.HeckCouplinginTandemReactions10.ConclusionsandPerspectives11.Abbreviations12.Acknowledgments13.References1591591601601611611621621621621621641641641641651651661661671671681691701701701.IntroductionHomogeneouspalladiumcatalysishasgainedenormousrelevanceinvariouscouplingreactionssuchasHeck,Stille,Suzuki,Sonogashira,andBuchwald-Hartwigreactions.Manyproductscouldbesynthesizedbythismethodologyforthefirsttimeorinamuchmoreefficientwaythanbefore.Thistypeofcatalysisprovideshighreactionrateandhighturnovernumbers(TON)andoftenaffordshighselectivitiesandyields.ThepropertiesofsuchPdcatalystscanbetunedbyligands,suchasphosphines,amines,carbenes,diben-zylideneacetone(dba),etc.Properliganddesignhasledtocatalyststhattolerateweakleavinggroupssuchaschloride,exhibithigherTONandreactionrates,haveimprovedlifetimes,andaresuitablystabletorunthereactionswithouttheexclusionofwaterorairandatlowertemperatures.The

10.1021/cr0505674CCC:$65.00©2007AmericanChemicalSocietyPublishedonWeb12/21/2006134ChemicalReviews,2007,Vol.107,No.1LunxiangYinwasborninAnhui,China.HereceivedhisB.S.andM.S.inchemistryatShandongUniversity(China)in1987and1990,respectively.ThenheworkedasalecturerinCollegeofShandongLightIndustryandShandongNormalUniversity.In2001,hejoinedProf.Liebscher’sgroupatHumboldtUniversity,Berlin(Germany),asaPh.D.student.Hisdoctoralresearchfocusedon“SynthesisofnewcalcineurininhibitorsbyPd-catalyzedcross-couplingreactions”.Heearnedhisdoctoraldegreein2005,andheiscurrentlyemployedasapostdoctoralresearcheratUniversityofCalifornia,Davis.Hisresearchinterestsincludetransitionmetalmediatedcouplingreactions,heterocyclicchemistry,anddevelopingnewsyntheticmethodology.Ju¨rgenLiebscherfinishedhisstudiesatTechnicalUniversityDresden,Germany,andreceivedhisPh.D.andhabilitationtherein1974and1977,respectively.HeworkedatAddisAbabaUniversityinAddisAbaba,Ethiopia,asAssociateProfessorfrom1979to1982.HejoinedDepartmentofChemistryatHumboldt-University,Berlin,asDozentin1982andbecameProfessortherein1992.HewasvisitingprofessoratUniversityWu¨rzburg,Germany,UniversityofTexas,Austin,AcademiaSinicaTaiwan,AddisAbabaUniversity,andUniversityofBotswana.Hisresearchinterestscomprisesyntheticorganicchemistry,heterocycles(synthesis,ringtransformations,applicationastoolsinorganicsynthesis),asymmetricsynthesis,analoguesofnaturalproducts(lipophilicnucleicacids,nucleo-bases,aminoacids,hydroxyacids,alkaloids,aminosugars),synthesisofpharmaceuticallyactivecompounds,totalsynthesisofheterocyclicnaturalproducts,andorganichydroperoxides.structureofthecatalyticspeciesisoftenknown,andstructure-activityrelationscouldbeestablished.Recentdevelopmentsofligand-freePdcatalystshaveprovidedinterestingandpracticallyimportantalternativestoligand-assistedmethodologies.Ontheotherhand,homogeneouscatalysishasanumberofdrawbacks,inparticular,thelackofreuseofthecatalystoratleasttheproblemofrecyclingofthecatalyst.Thisleadstoalossofexpensivemetalandligandsandtoimpuritiesintheproductsandtheneedtoremoveresidualmetals.1,2TheseproblemshavetobeovercomeintheapplicationofhomogeneousPd-catalyzedcouplingreactionsinindustryandarestillachallenge.3-9

YinandLiebscherInordertoaddresstheseproblems,heterogeneousPdcatalysisisapromisingoption.Here,Pdisfixedtoasolidsupport,7,10suchasactivatedcarbon(charcoal,forarecentreviewofapplicationinC-Ccouplingreactions,seeSeki,ref11a),11-13zeolitesandmolecularsieves,10,14-18metaloxides10,19-21(mainlysilicaoraluminabutalsoMgO,ZnO,TiO2,ZrO2),clays,22,23alkaliandalkalineearthsalts(CaCO103,BaSO4,BaCO3,SrCO3),porousglass,24organicpolymers,orpolymersembeddedinporousglass.25Ontheotherhand,Pdcanalsobefixedtoasolidsupportasacomplex;thatis,theligandsarecovalentlyboundtothesupport.Bothtechniquesallowonetoseparatetheheterogeneouscatalystafterthereactionortoreuseitaslongasitisnottoodeactivatedorboth.ForareviewaboutproductseparationtechniquesinHeckreactions,seeAraietal.9Alternativelysuchcatalystscanalsobeusedincontinuous-flowsystems25orinflowinjectionmicroreactors.26Normally,supportedPdcatalystsrequiremoredrasticreactionconditionsthanhomogeneouscatalysts,butthisdoesnotcauseproblemsasfarasthestabilityofthecatalystsisconcerned,becausetheyoftenarerelativelystable.Inthisway,thesomewhatloweractivitiescanbecompensatedtosomeextentbyusinghighertemperaturesandcatalystloadings.SeeDjakovitchetal.foracomparativestudyofhomogeneousversusheterogeneousPdcatalysisinHeckreactions.27Therearealsocasesreported,wherePdimmobilizedatzeolitesshowedhigheractivitythanfreePd(OAc)2or[Pd(C3H5)Cl]2,probablybecauseofthestabilizationoftheactivePdspeciesbythezeoliteframework.16ThecomparativelyhighstabilityofPdonsolidsupportssometimesallowsrunningthereactionevenundernormalambientconditions,thatis,withouttheexclusionofair.28Therewerecasesreportedwheresolid-supportedPdcatalystsshowhigheractivitiesthanhomoge-neouscatalysts,probablybecauseoftheirhigherstability.29TheapplicationofsupportedPdwasintroducedintoPd-catalyzedcouplingreactionsrelativelylate(early1970s)buthasbeenincreasinglyuseduptonow.Someindustrialapplicationshavealreadybeendeveloped.30,31

Itistheaimofthisreviewtogiveinsightintothestateofartinthefieldoftheapplicationofheterogeneouscatalystsincouplingreactionstosyntheticchemists.Scope,limita-tions,andproblemsassociatedwiththeapplicationofheterogeneouscatalystsincouplingreactionswillbecovered.TherearealsocasesincludedwherePdisfixedtoaninor-ganicsolidsupport(e.g.,silicaorironoxide)bythehelpoforganicligands,thatis,asacomplex.Suchligandscanbepartofapolymer,forexample,inglass/polymercompos-ites.32Pdcatalystssupportedbyentirelyorganicpolymersarenotincluded.10,33,34Mechanisticaspectsofthecatalysisarebrieflyaddressed,butanextensivesurveyaboutthisfieldisbeyondthescopeofthisreview.Thislimitationisalsoattributedtothefactthatthemechanismsarenotyetfullyunderstoodandfindingsinthisfieldaresometimescontra-dictory.Toanextreme,inmanycasesitisnotevenclearwhetherthegenuinecatalysisisheterogeneousorhomoge-neous.19,35Anup-to-datecriticalreviewaboutmechanisticaspectsofhomogeneousandheterogeneouscatalysisandthenatureofactivespeciesinMiziroki-HeckandSuzuki-MiyauracouplingswasrecentlypublishedbyJonesetal.36Inthepresentreview,catalystsarecoveredthatareusedassolidsandarenotsolubleinthereactionmixture,regardlessofwhethertheactingcatalyticpalladiumspeciesishomogeneousorheterogeneous.OtherrecentdevelopmentsinPdcatalysisincross-couplingreactionssuchasthe

HeterogeneousPdCatalyzedC−CCouplingReactionsChemicalReviews,2007,Vol.107,No.1135used.Ontheotherhand,caseswerereportedwherethecatalystloadingwentthroughanoptimum,thatis,higherPdloadingsdecreasedtheactivity.49Importantparametersoftheactivemetalarethesurfacearea,thedispersion(typicallyonly10-60%ofthemetalatomsareexposed),

1.1.Catalyststhesizeofthecrystallites(typicallyinarangeof2to>20Solid-supportedcatalystsarecomplexassemblies.Theirnm),thelocationintheporesofthesupport,theoxidationpreparationisachallengingtask.Minorchangesoftheirstate,thecounterionsifPd(II)isused,thewatercontent,preparationconditionscansignificantlyinfluencethedelicateandtheconditionsofitspreparation.7,50balanceofconflictingdemands:highactivity,highselectiv-Thesupportusuallyhasanimpactontheactivityofthe

ity,andlonglifetime.Palladiumcanbedepositedonasolidcatalyticsystem.Particlesize,surfacearea,porestructure,supportindifferentways.14Thepreferredmodeofdepositionandacid-basepropertiesareimportantparametersofthedependsalsoonthetypeofsupport.Withoxidesandcarbonsupport.7Thesupportcanaffectthecatalystactivityeithersupports,wetordryimpregnation,deposition-precipitation,bycreatingreactivespotsatthePdmetalcrystallites51-53ordeposition-reduction,andion-exchangemethodscanbebyimprovedreleaseofPd(0)intothesolutionbyleach-appliedusingmostoftenanaqueoussolutionofasuitableing.11,13,54Inthelattercase,thegenuinecatalyticsystemisPd(II)precursor,suchasPdCl2,Pd(NH3)4]Cl2,Pd(NO3)2,H2-homogeneous(Videinfra).Basicsupportssuchasbasic

PdCl,or[Pd(NH)](NO).Ontheotherhand,organic43432zeolites,layereddoublehydroxides,orsepiolitescanplaya乙酰丙酮solutionsofPd(0)complexes,suchasPd(acac)2(acac)similarsupportingroleasphosphinesinhomogeneousacetylacetone)orPd(C3H5)2arealsosometimesused.14Metalcatalysis49,55,56orcanactasbases,57thatis,noexternalbasesoxidesurfacesarehydroxylatedassuchorbecomehydroxy-arenecessaryinthesecases.

latedinthepresenceofaqueousPd(II)solutions.PretreatmentDuetotheircontrolledporesize,microporousandofcarboninanoxidizingenvironmentisusedtointroduce提高mesoporousmaterials,suchaszeolites,canbeadvantageousoxygen-containingsurfacegroups,thusenhancingthein-oversimplemetaloxides.Pd(0)clusterscanbeencapsulated

teractionwiththemetal.Thecatalystobtainedbytheinthesepores.Theporesizeandstructureofsuchsupportsdifferentmethodscanlateronbecalcined.ThisthermalcanhaveanimportantimpactonthereactivityandselectivitytreatmentoftenoverridesthepriorapplicationofthePdofthosecatalysts.58Thus,caseswerereportedwherealargerprecursortothesolidsupportasfarastheultimatemetalporesizeofmesoporoussilicaallowedreactionoflargerdispersionisconcerned.Ontheotherhand,thesurfaceofsubstratesascomparedwithmicroporoussupports.58thesupportcanbecovalentlyfunctionalizedbyligands,such

Pdonsolidsupportscanbeusedassuchorincombinationasphosphines,pyridines,ormercaptanes,whichform

withadditionalsolubleligands,suchasphosphines,carbenes,complexeswithdissolvedPdsalts.Thismethodologyis

andamines.Itisassumedthatsuchligandssupportleaching分离widelyusedinpolymer-46andsilica-supported47palladium

catalysts.GraftingofPdcomplexestothesolidsupportby阻止ofPd59intothesolutionactingashomogeneouscatalyst

there.Inothercases,theadditionofligands,suchasstartingwithaPdcomplexbearinglinkergroupsinthe

phosphines,inhibitsthereactionratherthanaccelerates.7,60加快ligandsisanothermethodtopreparesolid-supportedPd

Asinhomogeneouscases,heterogeneouslycatalyzedHeckcatalysts.48

reactionscanbepromotedbyammoniumsalts.61四乙氧基硅烷Sol-gelprocessescanalsobeusedforthepreparationof

Anumberofsolid-supportedPdcatalystsarecommerciallysolid-supportedPdcatalysts,mainlyforsilica-andalumina-available.However,theyoftendifferinstructure(supportsupportedPdcatalysts.Thesupportisgeneratedfroma

andPd),composition,andactivitydependingonthesupplier.monomer,suchastetraethoxysilaneoraluminumisopro-LaboratorychemicalsuppliersnormallydonotspecifythepoxideinthepresenceofasolublePdcompound,suchas

catalystmanufacturerandtheexactcatalysttype.ForPdCl2,Pd(NH3)4Cl2,orPd(acac)2(coprecipitation)and

optimizationofacatalyticsystemforlargerscaleproduction,eventuallyalinker.Inthisway,usuallyamorphousmaterials

itisnecessarytohavecontactwiththesuppliertogetalwaysareobtained,whereapartofthePdisencapsulated.Again

thesamequalityofsupportedPdortobuyastockofmaterialthesesystemscanbecalcinedlateron.

inordertoguaranteethereproducibilityofresults.WhenAlthoughtheactivespeciesinPd-catalyzedcross-coupling

syntheticchemistswanttoapplymethodsreportedinthereactionsisPd(0),themetalcangenerallybeusedasPd(0)

literatureforheterogeneouscatalysis,theyshouldbesureorPd(II)28onthesolidsupport.Inthelattercase,insitu

togetthesameorsimilarcatalystasreportedinthereductiontoPd(0)occursduringtheapplicationincross-procedure.Differencesfromtheoriginallyusedsystemcancouplingreactionswithouttheadditionofextrareducing

causeunwantedeffects.reagents,thatis,anamine,aphospineusedasligand,ora

ThecharacterizationofaheterogeneousPdcatalystonareactantreducesthePd(II)species.Inthecaseofcarbon-molecularlevelisstillaproblem,althoughTEM,X-raysupportedPd,partofthePd(II)isalreadyreducedtoPd(0)

起作用diffractometry,andIRspectroscopyallowimportantinsightsduringthepreparationofthecatalyst.Ontheotherside,

intothestructure.Often,heterogeneouscatalystsarestilltransformationofPd(II)intoPd(0)canbeimplementedby

chosenonanempiricalbasiswithoutunderstandingwhyaanextrareductionstep,forexample,byhydrazine,formal-givencatalystissuperiortoanotherone.dehyde,orhydrogen,oroccursalreadyinitspreparation,

whenthedeposition-reductionmethodologyisused.Gas-Reusageofaheterogeneouscatalystisoftenpossiblebut

phasereductionleadstosmallerPdparticlesthanliquid-issometimeslimitedduetoleachingofthePdwithout再沉淀14phasereduction.GenerationofthePd(0)fromPd(II)atredeposition(leachingupto14%PdfromPd/Cwasobserved

inHeckreactions62),changingofcrystallitestructureofthethesolidsupportcanoftenbeadvantageousbecausespecies

Pdonthesupportsurface,28,50chemicalchangeofPdligandsaregenerated,whichexhibitahighercatalyticactivity.

(e.g.,oxidationofphosphanesleadingtohighleachingofAloadingwith5wt%PdisusedformostofthePd

Pd)graftedtothesolidsupport,orcongestingthecatalystcatalysts;however,forspecialpurposeshigherloadingsare

applicationofcolloidalPd,37,38Pdclusters,39Pdblack,40

andPdnanoparticles41-45arenotconsideredinthisreviewbutwillbeoccasionallymentionedwhentheheterogeneouscatalystservesasasourceforsuchPdspecies.

136ChemicalReviews,2007,Vol.107,No.1surface,forexample,bysaltsformedasbyproductsinthecouplingreaction.58Therewerecasesreportedwherethecatalyticactivitydroppedconsiderablyinthesecondrun,whilemarginallossesofcatalyticactivitywereobservedinthefollowingruns.58ReuseofcatalyticPdcanalsobeachieved,whencolloidalPdisformedbyleachingfromthesupportandthesecolloidalparticlesareseparatedandsubmittedtoanotherrun.38Interestingly,thereareafewcasesreportedwheretherecycledcatalystexhibitedhigheractivitythantheoriginalone.52

Palladiummetalwithoutasolidsupporthasrarelybeenusedincross-couplingreactions.40,63,64Palladiumoncharcoal(alsocalledactivatedcarbon)(Pd/C)isbyfarthemostoftenusedcatalystinheterogeneousPd-catalyzedcouplingreac-tions.Itcanbepurchasedfromvariouslaboratorysuppliers,suchasAcros,Aldrich,Lancaster,orAlfaAesar,orfromthemanufacturersDegussaorJohnsonMattheyinvariousqualitieswithaPdcontentrangingfrom1%to20%.Thematerialscancontainwaterupto50%.Pd/Cisusedwithorwithoutadditionalligands.ProceduresforthepreparationofPd/Cwerereported.14,65

Cross-couplingscatalyzedbysolid-supportedPdcanbecarriedoutinorganicsolvents.Organicsolvent/watermixtureswerealsoused,andafewcaseswerereportedusingionicliquids12,66-69orworkingundersolvent-freeconditions.

1.2.MechanisticAspectsIngeneral,carbon-carboncouplingreactionscatalyzedbysolid-supportedPdfollowtheusualreactionmechanism,asshownforcouplingoforganometallicswithorganohalidesor-triflatesinScheme1.70-72

Scheme1.MajorStepsofPd-CatalyzedCouplingReactions

RecentresultsfromAmatoreandJutantgaveevidenceforananionicversionofthecatalyticcycleinHeckandotherPd-catalyzedcouplingreactionsunderhomogeneouscondi-

YinandLiebschertions(Scheme1b).72ProbablythismechanismismoreabundantthanthetextbookcycleshowninScheme1aunlessaryltriflatesorareneswithnon-halideleavinggroupsareused.36InvolvementofPd(IV)speciesasintermediateswastakenintoconsideration73butseemstobeunlikelyinlightoflaterresults.36,74,75Eachofthestepsofthecatalyticcyclescanberate-determining,dependingonthetypeofsubstrateandcatalyst.

AsfarastheinteractionofthePdcatalystwiththesubstrateandintermediatesisconcerned,severalmechanismshavetobetakenintoconsideration.36ThusthereactioncantakeplaceatthesurfaceofsolidPd51,76asatrulyheteroge-neousreaction.Ontheotherside,aquasi-homogeneousmechanismcanoccur,wherePdgetsdissolvedascol-loids42,74,77orascomplexesthathavebeenleachedfromthesupportedPd,forexample,byoxidativeadditiontothesubstrate.10,11,13,19,21,28,38,48,50,74,78,79Despiteearlierreportsgiv-ingsomeevidence(hotfiltrationtest,Hg(0)poisoning,...)for,butnotproving,80aheterogeneousmechanism,ithasbecomemoreandmoreacceptedthatleachedsolublePdspeciesarethegenuinecatalyticallyactivespeciesinHeckandalsoinmostothercouplingreactionsimplementedbysolid-supportedPd.36,74ThephenomenonthathomeopathicdosesofdissolvedPdcancatalyzecross-couplingreactionsmakesitdifficulttofindoutthetruenatureoftheactingcatalyticspecies.74,81TherewerecasesreportedwherethedissolvedPdformedbyleachingcatalyzestheHeckreaction,whereassolidPdparticlesgiverisetosidereactionssuchasdehalogenationreductivecouplingofhaloarenes.27,82Ingeneral,leachingissupportedbypolarsolvents,suchasDMForN,N-dimethylacetamide.49,83,84TheoxidationstateofthePdonthesolidsupportcanalsohaveaneffectontheextentofleaching(Pd(II)ispronetoleaching).61,84Inthecaseofaheterogeneousmechanism,thesupportcanaffectthestructureofthePdcreatingreactivespots(edges,corners,adatoms)ofhighcatalyticactivityinthecrystallitestructureorcanprovidereactioncavities,forexample,incaseofPdsupportedbyzeolites.Ontheotherhand,activationofthePdsurfacebythesupportcanalsoprovidebetterdesorptionleadingtofasterformationofcolloidsorcomplexesinsolution,theheterogeneousPdthusservingasareservoirfordissolvedspecies.AsfoundinHeckreactionscatalyzedbyPd/C,Pd/alumina,Pdonzeolites,orPdonsilicoalumi-nophosphates,Pdcandissolveinthebeginningofthereaction,whilereactantsprobablyactasligandsfortheformationofcomplexes.11,19,28,35,38,82,84-86TheconcentrationofPdinsolutionwasfoundtobehighestatthebeginningofthereaction(20%ofthetotalcontentofPd)andgraduallydroppedwiththeprogressofthereaction.Asthereactioncomestoanend,mostofthePdreprecipitatedatthecarbonduetothelackof“reactantligands”.Properlyestablishedreactionconditions(increasedreactiontemperature,additionofreducingagents,andworkingunderinertconditions)allowedthentheminimizationofthefinalPdconcentrationinsolution.28,38,87Sometimesthefinalconcentrationcouldbereducedtolessthan1ppm.28

ChangesofthecrystallitestructureofthestartingPd/CascomparedwiththefinalPd/Cwereobservedinsuchcases.28EffectiveretrappingoftheregeneratedPd(0)speciesformedinthereductiveeliminationbythesolidsupport(e.g.,charcoal)isapreconditionforreusablecatalysts.11,38,88Sometimesre-depositionofleachedPdcanbesofastandcomprehensivethatitcanmasktheleachingphenomenon.ThedepositionofdissolvedPdspeciescanoccurnotonly

HeterogeneousPdCatalyzedC−CCouplingReactionstotheoriginalsupport(re-deposition)butalsotoothersupportsaddedtothemixture,orthedissolvedspeciescanprecipitateasfreePdparticles.38Naturallythere-depositedPdexhibitsdifferentpropertiesduetocrystallitegrowthascomparedwiththestartingPdsystem,andthusnormallythecatalyticactivitydropsaftereachrunwhenthematerialisusedseveraltimes.28,50Asanothereffect,re-depositedPdcancatalyzeunwantedsidereactions,whileonlythedis-solvedPdsupportstheenvisagedcross-coupling.11,28

2.SuzukiReactions2.1.PdonCarbon(Pd/C)TheSuzuki-Miyaurareactionhasbecomeamainstayofmodernsyntheticorganicchemistryforthepreparationofbiarylcompounds.89-91Inthepastdecade,thePd/C-catalyzedarylationbySuzuki-Miyaurareactionhasbeenappliedwidelyinorganicsynthesisofbiarylcompounds,whichcanalsobeheterocyclic.Itcanfurtherbeusedincouplingofvariousorganicmoietiesdifferentfromarylcompounds,suchasalkenes,alkynes,oralkanes.ThefirstexampleofPd/C-catalyzedSuzukireactionwasreportedbyMarckandco-workersin1994.92Ingeneral,Pd/Cisusedwithorwithoutadditionalphosphineligands,andoftentheapplicationofaqueoussolventsisadvantageous.

2.1.1.InthePresenceofPhosphineLigandsInthefirstexamplesoftheapplicationofPd/CinSuzuki-Miyauracouplings(Scheme2),triphenylphosphinewasusedasaligandadoptingthemethodologyfromhomogeneouscatalysis.3Thebromoarene1andthetriflate3weretransformedintothecorrespondingdiarylproducts2and4inhighyields.92

Scheme2.Pd/C-CatalyzedSuzukiCouplinginthePresenceofPPh3

Nishidaandco-workers59foundthataphosphineligandwasindispensableforthePd/C-catalyzedSuzukireactionsofhalopyridinesandhaloquinolinesinmostcases(Table1).Thereactionsofbromopyridines5a-c,2-chloropyridine(5g),2-chloropyridineswithanelectron-withdrawinggroup5d-f,5h,and5i,andhaloquinoline7aand7bproceededsmoothlyandgavetheproductsingoodyields(Table1,entries1-9,14,15,and17).However,thereactionsof2-chloropyridineswithanelectron-donatinggroup,5jand5k,gaveunsatisfactoryresults(Table1,entries10and11).Thereactivityofthesubstrateshowedthesametendencyaswasseeninthereactionwithahomogeneouscatalyst;thatis,chloropyridineswithanelectron-withdrawinggroupweremorereactivethanthosewithanelectron-donatinggroup.Inordertoimprovetheyieldsofless-reactivesubstratessuchas3-chloropyridine(5l),4-chloropyridine(5m),and6-chloroquinoline(7c),ligandeffectswerestudiedbyusing

ChemicalReviews,2007,Vol.107,No.1137Table1.Pd/C-CatalyzedSuzukiCouplingofN-Heterocycles5,7,or8withPPh3

entryhaloheterocycleligandyielda(%)15a:R)H,X)2-BrPPh38525b:R)H,X)3-BrPPh39035c:R)H,X)4-Brb

PPh36045d:R)3-NO2,X)2-ClPPh39455e:R)5-CN,X)2-ClPPh39065f:R)5-NO2,X)2-ClPPh38575g:R)H,X)2-Clnone0PPh38285h:R)3-CN,X)2-Clnone16PPh310095i:R)5-CF3,X)2-Clnone30PPh385105j:R)6-OMe,X)2-ClPPh325115k:R)3-NH2,X)2-ClPPh319125l:R)H,X)3-ClPPh32135m:R)H,X)4-ClbPPh39147a:X)2-Clnone0PPh391157b:X)3-Brnone0PPh391167c:X)6-ClPPh3017

8

none36PPh3

72

a

Isolatedyield.bPyridiniumhydrochloridewasused.

3-chloropyridine(5l)andPd/C.Thestericallyhindered2-(dicyclohexylphosphino)biphenyl12(9mol%)wasfoundtoimprovetheyielddramatically(Table2,compareentries1and3).59,93Ithasbeenreportedthatbulkyandelectron-richligandsincreasetheyieldsofhomogeneousSuzuki-Miyauraandothercouplingreactions.91Theseligandsfacilitateoxidativeaddition,andthespatialbulkaroundthemetalpromotesreductiveelimination.Thus,duringthePd/C-catalyzedreaction,12wouldinteractwiththeleachingPdandshowthesameeffects.ThecombinationofPd/Cand12wasalsoeffectiveforthereactionsof4-chloropyridine5mand6-chloroquinoline7c(Table2,entries4and5).59Remarkably,thiscombinationwasnoteffectiveinthereactionof4-methoxychlorobenzene11,butPd(II)/Cand12providedhighyieldsoftheproduct.(Table2,entry6).

Table2.Pd/C-CatalyzedSuzukiCouplingofN-Heterocycles5,7c,or4-Methoxychlorobenzene,11,withDifferentLigands

entryhaloheterocycleligandyielda(%)15l:R)H,X)3-Cldppp025l:R)H,X)3-Cldppb035l:R)H,X)3-Cl128845m:R)H,X)4-Cl129257c:X)6-Cl12776

11

12

80b

a

Isolatedyield.bPd(II)/Cwasused.

138ChemicalReviews,2007,Vol.107,No.12.1.2.IntheAbsenceofPhosphineLigandsAlreadyintheearlyinvestigationsoftheapplicationofPd/CinSuzuki-Miyauracouplings,itwasfoundthatligand-freemethodologycanbeadvantageous.92Goodtoexcellentyieldsofcouplingproductswereobtainedwhenbromide,iodide,ortriflateactedasleavinggroup(Table3).Chlorosubstituentsinthearylboronicacidweretolerated;thatis,theydonotreactintheSuzukicoupling.TheresultsgaveevidencethatthePd/C-assistedcouplingreactionsmightoccurbyheterogeneouscatalysisundertheseconditions.

Table3.Ligand-FreePd/C-CatalyzedSuzukiCoupling

yieldaAr,XAr′baset(h)(%)4-CHO-Ph,Br4-F-Ph

Et3N5844-CN-Ph,Br4-Cl-3-F-PhNa2CO31943,5-(CF3)2-Ph,Br4-n-Pr-PhNa2CO3

0.5904-n-Pr-Ph,Br3,5-di-F-Ph2MNa2CO319883-F-4-OH-Ph,Br4-n-Pen-PhNa2CO31980b4-Me2N-Ph,Br4-Cl-3-F-PhNa2CO31995Ph,I4-Cl-3-F-PhNa2CO319914-Cl-3-F-PhNa2CO319944-Et-Ph,Br4-Cl-3-F-Ph2MNa2CO31987b4-CN-Ph,OTf

PhNa2CO31950Ph

Na2CO3

18

84c

a

Isolatedyields.bDMEassolvent.cDMFassolvent.

In2001,LeBlondandco-workers76foundanefficient

methodologytocoupleweaklyreactivearylchlorides,whichhadbeenaprobleminhomogeneousSuzukicouplingforalongtime.Pd/CinDMA/waterwasappropriate.TheoptimalvolumetricratioofDMA/waterwasfoundtobe20:1,enablingthecross-couplingtogotocompletionwithin1.5hwithouttheformationofhomocouplingproductsfromthearylchlorides.Theseconditionsaregenerallyapplicabletowardarylchlorideswithelectron-withdrawinggroupsandgave79-95%yields(Table4).Moderateyieldswereobtainedwithneutralorelectron-richarylchlorides,whichcouldbeimprovedbyusinggreateramountsofcatalyst(seeentry7).

Table4.Pd/C-CatalyzedSuzukiCouplingofArylChlorides

entryRR′yielda(%)conv(%)1NO2H931002CF3H951003CNH831004AcH791005HOMe45616OMeH32

37

7

Me

H

36,b54c

65,b76c

a

Isolatedyield.b48h.c15mol%ofPd/C.

DetailedinvestigationsbyKo¨hler’sgrouponSuzukireactionsofarylbromidesandchlorideswithphenylboronicacidgaveimportantinsightsintheeffectoftheconcentrationofthePd/Ccatalystandotherreactionconditionsonthecatalyticactivity,theyield,andtheselectivity.81Underoptimizedconditions,couplingproductsofbromoarenesand

YinandLiebscherphenylboronicacidwereobtainedinexcellentyieldsaftershortreactiontimesbyusingextremelylowPdconcentra-tionsofonly0.005-0.01mol%(Table5,entries1-4).HighTON,upto20000,wereachieved.Alsodeactivatedbro-moareneslikep-bromoanisolecouldbeconvertedupto83%withoutdehalogenationwithin60min(Table5,entry5).ThehighestTOFwas16600h-1,and100%selectivityfortheSuzukicouplingproduct(cross-coupling)wasfoundnearlywithoutexceptions.p-ChloroacetophenonecouldbeconvertedquantitativelyatPdconcentrationsof0.25mol%within4h.Conversionsupto90%wereachievedafter2husing0.005-0.10mol%Pd.

Table5.Pd/C-CatalyzedSuzukiCouplingofArylHalideswithPhenylboronicAcid

entryXR(molPd/C%)NMP/H2Obase(h)tconv(%)yield

(%)TONTOF

1BrCN0.0110:4Na2CO31.51001001000066662BrH0.00510:4Na2CO3210010020000100003BrOH0.0110:4Na2CO321001001000050004BrOMe0.00510:4Na2CO3210010020000100005BrOMe0.00510:4Na2CO31838316600166006ClAc0.2510:3NaOH4100984001007ClAc0.1010:3NaOH290889004508

Cl

Ac

0.05

10:3

NaOH

2

80

78

1600800

Theadditionofwatertotheorganicsolventincreasedtheactivity.Acrucialinfluencewasfoundforthebase.Na2-CO3gavethebestresultsforcouplingsofarylbromides,whereasNaOHpromotedthedeborylationanddehalogena-tionresultinginadecreasedselectivity.Incontrast,NaOHisfoundtobethebestchoiceforactivatedarylchloridesundertheconditionsapplied(120°C,NMP/water).Againithastobementionedthattheoptimumreactiontemperature(120°C)ishigherthaninatypicalhomogeneouslycatalyzedSuzukireaction(about80°C).

Ontheotherhand,roomtemperaturewasappropriateinPd/C-catalyzedcouplingofiodophenols17witharylboronicacidsinwaterinthepresenceofK2CO3(Table6).88Inthecaseofbromophenol,highertemperaturewasadvantageous(entries8and9).

Table6.Pd/C-CatalyzedCouplingofHalophenolswithArylboronicAcidinAqueousMedia

entryhalophenolarylboronicacidT(°C)yield(%)12-iodophenolPhB(OH)2RT7023-iodophenolPhB(OH)2RT9734-iodophenolPhB(OH)2

RT>9944-iodophenol4-FC6H4B(OH)2

RT>9954-iodophenol4-MeOC6H4B(OH)2RT>9964-iodophenol4-MeC6H4B(OH)2RT>9974-iodophenol2-MeOC6H4B(OH)2RT9884-bromophenolPhB(OH)2RT359

4-bromophenol

PhB(OH)2

50

76

ItisnoteworthythattherecoveredPd/Cpossessesenoughcatalyticactivityforfurthercouplingreactions.ApplicationofrecoveredPd/Ctothecouplingof4-iodophenolandphenylboronicacidrevealedthatthecatalyticactivitygradu-

HeterogeneousPdCatalyzedC−CCouplingReactionsallydiminished,buttheyieldwasstill89%afterthefifthreuse(Table7).

Table7.Reactionof4-IodophenolwithPhenylboronicAcidUsingRecoveredPd/CasCatalyst

entryPd/Ccatalystyield(%)1fresh>992firstreuse953secondreuse944thirdreuse905fourthreuse896

fifthreuse

89

Recently,Sajikietal.reportedanefficientprotocol94forthephosphine-freeSuzukireactioncatalyzedbyPd/Catroomtemperature.UnlikeintheprocedureusedbyKo¨hleretal.81(Videsupra),acommercialcatalystwasused,andthereactioncouldbecarriedoutatroomtemperatureomittingtheneedforsealedtubesbutneedingmuchhigherquantitiesofcatalyst(10mol%).Bromoareneswitheitherelectron-withdrawingsubstituents,suchasNO2,CHO,COCH3,orCO2C2H5,orelectron-donatingsubstituents,suchasOCH3,coupledreadilywitharylboronicacidsinexcellentyields(Table8)usingcommerciallyavailable10%Pd/C(3.5mol%)inethanol-H2O(1:1)andNa2CO3.Arylbromidescontainingelectron-withdrawingsubstituentsreactedfasterthanthosewithelectron-donatingsubstituents(forexample,entry1vsentries2-4).

Table8.Pd/C-CatalyzedSuzukiCouplingofArylBromidesandArylboronicAcidsatRT

entryRR′t(h)yielda(%)1OMeH6952AcH5993NO2H2>994CHOH

5>995Ac4-OMe2976CHO4-OMe2967NO24-OMe1988OMe4-OMe5>999Ac3-OMe3>9910OMe2-OMe59411NO22-OMe4>9912CHO2-OMe59813Ac2-OMe4>9914NO24-Ac19>9915

CO2Et

H

3

99

a

Isolatedyield.

Thecatalystcouldberecoveredusingasimplefiltrationandwashingsequence.Reusewaspossiblewithoutsignifi-cantdecreaseincouplingyieldeveninthefourthrun.Ligand-freePd/C-catalyzedSuzuki-Miyauracouplingalsotoleratesacidgroupsinthehaloareneandinthearylboronicacid.Itwasusedinthesynthesisofbiarylaceticacids21(Scheme3).95

Scheme3.SynthesisofBiarylaceticAcidsbyPd/C-CatalyzedArylation

ChemicalReviews,2007,Vol.107,No.1139ThePd/C-mediatedsynthesisofthediarylcarboxylicacid24wasimplementedonalargescale(2×6.3kgbatches)inapilotplant(Scheme4).31Similarly,aphenyldiboronatewascoupledtwicewith3-iodophthalateunderligand-freeconditionsinthepresenceofCs2CO3.96

Scheme4.Multikilogram-ScaleSynthesisofSB-251475

TheintegrityoftheconfigurationwasmaintainedinthePd/C-catalyzedSuzukicouplingofopticallyactive4-bro-momandelicacidsinthepresenceofNa2CO3providingenantiopure4-arylmandelicacids26(Scheme5).97Both,electron-donatingandelectron-withdrawinggroupsweretoleratedinthearylboronicacid.

Scheme5.CouplingofOpticallyActive4-BromomandelicAcidwithArylboronicAcids

Recently,itwasshownthattetraarylboratescanbeusedinligand-freePd/C-catalyzedSuzukireactionofbromo-arenes.98Variousbiarylcarboxylicacidsandphenolswerepreparedinhighyields(Table9).Again,thecatalystcouldbereusedseveraltimes.Forexample,couplingof4-bro-mobenzoicacidwithsodiumtetraphenylboratecatalyzedbyrecoveredPd/Cprovided88%,84%,81%,and76%yieldinthefirsttothefourthreuse,respectively.

Bromo-andiodoheteroarenescanalsobeusedinligand-freePd/C-catalyzedSuzukicoupling.Thusthequinoline30wasobtainedwithaverylowlevelofresidualPd.LeachedPdwasfoundinthereactionmixture,whichdiminishedtolessthan4ppmaftercompletionofthereaction;thatis,thereactionrunsbyhomogeneouscatalysis(Scheme6).87

ThePd/C-catalyzedsynthesisofpyrazolylphenylsulfon-amides32wasimplementedin100-mgscaleusingaQuestmodel210synthesizer(Scheme7).99

5-Aryl-2-furfurals34weresynthesizedbyPd/Ccatalyzed,ligand-freeSuzukicouplingstartingfromthecorrespondingdiethylacetal33(Table10).100

AstrongeffectofthehalidewasfoundinPd/C-catalyzedligand-freeSuzukicross-couplingof2-halocycloalkenoneswitharylboronicacids.101While2-iodocycloalkenones35reactedundermildconditionsat25°CunderairinaqueousDME(Table11),thecorresponding2-bromo-2-cyclohexen-1-onecompletelyfailedtoundergoSuzukicouplingunderthesameconditions.Onlyextensivedecompositionofstartingmaterialswasobserved.101

Thecouplingof2-iodo-2-cyclohexen-1-onewithphenyl-boronicacidwasalsoexaminedusingrecoveredcatalyst.ItwasfoundthatthePd/Ccatalystcouldbereusedatleastfiverunswithoutaffectingtheyield(79-85%).Theprogres-sivedecreaseintheactivitycouldbeefficientlybalancedbyincreasingthetemperatureofthereactionfrom25to50°C.101

140ChemicalReviews,2007,Vol.107,No.1Table9.Pd/C-CatalyzedSuzukiReactionsofArylBromideswithSodiumTetraphenylborate

a

Reactionconditions:0.27equiv(basedonbromide)Ph4BNa,2.00equivNa2CO3,refluxunderairfor1h.bYieldsdeterminedbyHPLCanalysis.cReactiontimewas24h.

Scheme6.Pd/C-CatalyzedSynthesisofArylquinoline30

Scheme7.Pd/C-CatalyzedSynthesisofPyrazolylphenylsulfonamides32

2.1.3.SurfactantsLigand-FreeSuzukiCouplinginAqueousAlthoughmanyPd/C-catalyzedSuzukireactionsprovidedgoodresultsinwaterorwater/organicsolventmixtures,itcanbeusefultousewaterinthepresenceofsurfactants,

YinandLiebscherTable10.Pd/C-CatalyzedOne-PotSynthesisof5-Aryl-2-furfurals

Art(h)yielda(%)4-NO2-Ph2813-NO2-Ph2912-NO2-Ph16844-MeO2C-Ph18784-CF3-Ph6912-thienyl

36

79b

a

Isolatedyield.bAdditionalPd/C(10wt%)wasrequired.

suchastetrabutylammoniumbromide.Themethodologycanprovidethefollowingadvantagesincomparisonwithmoreconventionalprocedures:noorganicsolventisneeded;ultralowsurfacetensionallowsfastandeasymixingofreagents;thesystemsareformedspontaneouslyandvigorousmechanicalorultrasonicagitationisnotneededtoobtainandmaintainthesesystems.

Arcadietal.reportedamildandversatilemethodforPd/C-catalyzedSuzukicouplingofarylhalidesinwaterandsurfactants.102Theconcentrationofthesurfactantsinwaterplayedapivotalrolefortheoutcomeofthereaction.Aseriesofbiarylswereobtainedingoodtoexcellentyieldsfromaryliodides,bromides,andchlorides(Table12,exceptionof4-chloroanisoleinentry12).

Theexperimentalprocedureisverysimple.Liquid-liquidextractionwithacommonorganicsolvent,suchasdiethylether,allowsthequantitativerecoveryoftheproductfromthewater-surfactantPd/Csystem.Theactivityoftherecoveredwater-surfactantPd/Csystemwasmonitoredusingthereactionof4-bromoanisolewithPhB(OH)2.Althoughthecatalyticactivitygraduallydiminished(yieldof4-methoxybiphenylforfirstreuse95%,secondreuse88%,thirdreuse85%,andfourthreuse80%),theyieldwasstill80%evenafterthefourthreuse.

Amarkedeffectoftetrabutylammoniumbromide(TBAB)ontheyieldofproducts39wasfoundinthePd/C-catalyzedSuzukireactionofchloro-andbromopyridines38withphenylboronicacidinwater.59Theyieldsincreasedfrom21-55%to67-95%whenTBABwasused(Table13).In2005,Ko¨hler’sgroupdevelopedligandlessPd/C-catalyzedSuzukicross-couplingreactionsofvariousarylchloridesinaqueoussurfactant(TBAB).Thisprocedureisaveryattractivewayofaccessingmultifunctionalbiarylsbecausesensitivefunctionalgroupslikeesterandnitrilegroupsaretolerated(Table14).103

2.1.4.UltrasoundLigand-FreeConditionsSuzukiCouplingunderMicrowaveorMicrowave(MW)heatingandhigh-intensityultrasound(US)haveemergedaspowerfultechniquesbywhichreactionscanbebroughttocompletioninshorterreactiontimesinanumberofcases.SuchconditionscanalsobeadvantageousinPd/C-catalyzedSuzukicross-couplingreac-tions.

Leadbeateretal.reportedthePd/C-catalyzedSuzukicouplingofarylchlorideswithphenylboronicacidinwaterusingmicrowaveheatingwithsimultaneouscooling(Table15).104

HeterogeneousPdCatalyzedC−CCouplingReactionsTable11.Pd/C-CatalyzedSuzukiCouplingof2-IodocycloalkenoneswithArylboronicAcids101

a

Isolatedyields.

Pd/C-catalyzedcouplingofiodoareneswithmethoxyphen-ylboronicacidsinmethanol/waterusingKFasthebasegavehighyieldsofthediaryl42underultrasoundirradiation(Scheme8).70

Inthebromo-andiodoareneseries,thesimultaneoususeofhigh-intensityultrasoundandmicrowaveirradiation

ChemicalReviews,2007,Vol.107,No.1141Table12.Pd/C-CatalyzedSuzukiCouplingofArylHalideswithArylboronicAcidsin0.1MaqCTAB

entryAr1

XAr2T(°C)t(h)yield(%)14-MeO-PhIPhRT249524-MeO-PhBrPh

RT249434-MeO-PhBr4-Me-PhRT249644-MeO-PhBr4-FRT248954-MeO-PhBr3-OMeRT246565-pyrimidylBrPhRT246574-CHO-PhBrPhRT247482-NO2-PhBrPh60249592-Ac-PhBrPh60489104-Ac-Ph

ClPh1002485112-NH2-4-CF3-PhClPh100249612

4-MeO-Ph

Cl

Ph

100

24

6

Table13.Pd/C-CatalyzedSuzukiCouplingofPyridylHalidesinAqueousTBAB

TBAByieldapyridylhalide(equiv)(%)R)H,X)2-Br0210.167R)H,X)3-Br0540.185R)H,X)4-Brb0550.3671.595R)3-NO2,X)2-Cl0490.1670.387R)5-CN,X)2-Cl

0341.5

69

a

Isolatedyields.bPyridiniumhydrochloridewasused.

Table14.SuzukiCross-CouplingofArylChloridesinaqTBAB

base,PhB(OH)2T(°C),yieldaRPd(%)equiv(equiv)t(h)(%)4-Ac0.2NaOH,2.51.1100,2994-CN0.5KF,2.51.1100,3982-CN0.5KF,2.51.1140,3894-CO2Me0.5KF,2.51.1140,387H0.5KF,2.51.1140,673b4-Me2NaOH,51.5140,6812-Me2NaOH,51.5140,6744-OMe2NaOH,51.5140,6834-NH2

2

NaOH,5

1.5

140,6

66c

a

Isolatedyield;reactionconditions,4mmolofArClin6mLofwater.b4-Tolylboronicacidwasused.cDeterminedby1HNMR.

sometimesgavebetterresultsinligand-freePd/C-catalyzedSuzukicross-couplingreactionsthanjustusingoneoftheseeffects(Table16).105

2.2.PalladiumonMetalOxides2.2.1.Palladium-DopedKF/Al2O3Palladium-dopedKF/Al2O3wasusedinsolvent-freeSu-zukicouplings.Aseriesofbases,organohalides44,andboronicacids45wereinvestigated.106KFturnedouttobe

142ChemicalReviews,2007,Vol.107,No.1Table15.CouplingofArylChlorideswithPhenylboronicAcidunderMicrowaveIrradiationa

arylchloride

reactionsimultaneous(R)time(min)

cooling

yield(%)4-Ac10no89yes904-NO210no96yes944-CN10no79yes804-Me10no40yes752-Me10no25yes64H10no59yes654-OMe10no36yes652-NH2

30

no21yes

56

a

Reactionswereruninasealedtubeusing1mmolofarylchloride,1.3mmolofphenylboronicacid,1mol%Pd/C,3.7mmolofNa2CO3,1mmolofTBAB,and2mLofH2O.Aninitialmicrowaveirradiationof300Wwasused,thetemperaturebeingrampedfromroomtemperatureto120°C.

Scheme8.Ultrasound-PromotedSuzukiCouplingofIodobenzeneand4-MethoxyphenylboronicAcid

Table16.SuzukiCouplingofArylHalideswithPhenylboronicAcida

USbMWcUS/MWdarylhalideyield(%)yield(%)yield(%)

4-iodoaniline90864-bromoaniline97904-iodoanisole72783-bromoanisole5464882-bromoanisole79702-iodothiophene403759

1-iodonaphthalene32634-bromobenzonitrile

78

74

a

Underargonatmosphere,1mmolofphenylboronicwasreactedwith1mmolofarylhalideand2mmolofK2CO3,using0.05mmolofPd/Cascatalyst.bUltrasoundirradiation(20.5kHz,90min),THF/waterorDME/water,1:1,assolventat45°C.cMWirradiation(700W,20min),DMEassolvent.dDME/water,2:1,assolvent,1hirradiation(US20.5kHz,MW700W).

themosteffectivebase.Asusual,aryliodidesgavebetterresultsthanthebromidesandchlorides(Table17).Aryl-boronicacidsaremorereactivethanalkenylboronicacidsandalkylboronicacids.RelativelyhighquantitiesofPdwereused.

Solvent-freeSuzukireactionscatalyzedbyPd-dopedKF/Al2O3werealsoinvestigatedundermicrowaveirradia-tion.107,108Reductionofreactiontimesfromhourstoafewminutescouldbeachievedinthisway(Table18).Again,relativelyhighamountsofPdwerenecessary.Thecatalystcouldberecoveredbyasimplefiltrationandwashing

YinandLiebscherTable17.SuzukiReactionsCatalyzedbyPdDopedonKF/Al2O3

a

Isolatedyields.

sequenceandcouldbereused.Suzuki-Miyauracouplingofiodobenzenewithtolylboronicacidundersolvent-freeconditionsapplyingthermalandmicrowaveenhancementrevealedthattherecoveredcatalystexhibitedthesameactivitythroughatleastsixcycles.107

Table18.MW-EnhancedSolvent-FreeSuzukiReactionsonPd-DopedKF/Al2O3

Ar-XAr′conditionsyield(%)refPh-I4-Me-Ph15min,30W98108Ph-I

4-MeO-Ph2min,90W951084-Me-Ph-IPh

2min,90W82108Ph-I3-Cl-Ph2min,60W581082-Py-BrPh5min,60W661082-Py-BrPh

5min,60W40108Ph-I4-Me-Ph2min,100W82107Ph-Br4-Me-Ph2min,100W52107Ph-Cl4-Me-Ph2min,100W4107Ph-I

4-Cl-Ph

2min,100W

87

107

2.2.2.Pd−N-HeterocyclicIronOxideNanoparticle-SupportedCarbeneComplexesAkindofPd-N-heterocycliccarbenecomplex(Pd-NHCcomplex)fixedtoironoxideviaapolymerwaspreparedbyGao’sgroupasshowninScheme9.ThecatalystwasstableanddemonstratedhighcatalyticactivityinpromotingSuzukireactions.109Highyieldswereachievedwithvariousaryliodidesorbromidesandarylboronicacidsusingonly0.015mol%catalyst(Table19).

Scheme9.PreparationofFe2O3Nanoparticle-SupportedPd-NHCComplex

HeterogeneousPdCatalyzedC−CCouplingReactionsTable19.SuzukiCouplingsofArylHalidesandArylboronicAcidsCatalyzedbyFe2O3-Nanoparticle-SupportedPd-NHCComplex

R1XR2yielda(%)

HI2-Me86HI3-Me88HI2-OMe84HI3-Ac89HI1-Naph82HI4-CN822-MeIH874-MeIH882-OMeIH744-OMeIH834-AcIH803-MeBrH742-OMeBrH703-OMeBrH724-OMe

Br

H

78

a

Isolatedyields;averageofatleasttworuns.

Asaspecialfeature,therecoveryofthisparamagneticcatalystwasfacilelyachievedbyusingapermanentmagnet.Isolatedcatalystswereusedforsubsequentnewroundsofreactionswithoutsignificantlossofcatalyticactivity.

Later,Gao’sgrouppreparedanotherkindofmagneticmaghemite(γ-Fe2O3)-silicananoparticleswherePdwascomplexedviaatetherednitrogenheterocyclicApplicationcarbene(Fe2O3-Si-Pdcatalyst)(Figure1).ofthiscatalystinSuzukicouplingreactionsofaryliodidesorarylbromidesgavegoodresults(Table20).110

Figure1.Structureofmaghemite-silicananoparticle-supportedNHCPdcomplex.

Table20.Maghemite-Silica-Nanoparticle-SupportedPd-CatalyzedSuzukiReactions

GCisolatedRXyield(%)yield(%)2-MeI95a872-MeBr93842-OMeI99914-Ac

I

99

93

a

Firstrun;thesecondtofifthroundyieldgave94%,95%,93%,and93%yield,respectively.

2.2.3.Palladium-ContainingPerovskitesItwasdemonstratedthatPd-containingperovskitesareageneralclassofheterogeneouscatalystspossessingutilityincross-couplingreactions.111Themechanisminvolvesthegenerationofsoluble,catalyticallyactivepalladiumspeciesthathavebeendesorbedfromthebulkinorganicphaseandwillprobablybere-depositedonamodifiedsolidphaseafterthereactioniscomplete.Palladium-containingperovskites

ChemicalReviews,2007,Vol.107,No.1143alsoturnedouttobeeffectivecatalystsinSuzukicouplingreactionsofaryliodidesandarylbromides.112Thecatalystcouldeasilyberecoveredandreused.113Inthecaseofcouplingof4-bromoanisoleandphenylboronicacid,thecatalystcouldbeusedforfiverunswithoutanydedectablelossofcatalyticactivity(Scheme10).

Scheme10.RecoveredPd-Perovskites-CatalyzedSuzukiCoupling

2.2.4.MiscellaneousMetalOxidesRecently,Helletal.usedaPd/MgLamixedoxidecatalystinSuzuki-Miyauracross-couplingreactionsofboronicacidswitharylhalides,aswellaswithbenzylbromide,inethanolusingpotassiumcarbonateortriethylamineasbases(Scheme11).114Thecatalystcouldbereusedseveraltimesandprovidedhighyieldsalsoifarylchlorideswereused.

Scheme11

PdcatalystsusingsepiolitesassolidsupportallowedtheSuzukireactionofiodobenzenewithphenylboronicacidtobecarriedoutwithoutusinganadditionalbase.57Reusageofsuchcatalystswaspossible,however,underconsiderablelossofactivity.Thecatalystcouldbereactivatedtoacertainextentwhenalkaliexchangedsepioliteswereused.

TheapplicationofaPdx-([PW11O39]7--([PW)y-KFcatalystobtainedbyfixingPdx11O39]7-)y-nanoparticlesonKFallowedthesynthesisofbiaryls51fromarylorheteroarylchloridesandphenylboronicacidundersolvent-freecondi-tionsinexcellentyields(Scheme12).45

Scheme12

2.3.PdonPorousAluminosilicatesZeolitesaswell-definedporousmaterialscanbeusedassupportsforPdassuchorinamodifiedmanner.Pd(II)onbasiczeoliteswasreportedintheSuzuki-Miyauracouplingofbromobenzenewithphenylboronicacidintoluene.115Noleachingwasobserved,andthesolidcatalystcouldbereusedafterwashingwithwater.Onlyaminordecreaseinthecatalyticactivitywasobserved.

Pd(II)-NaYzeoliteorPd(0)-NaYzeoliteperformedverywellinSuzukireactionsofarylbromideswithouttheadditionofaligand.116,117ThecatalystsexhibitedexcellentactivitywithK2CO3orNa2CO3asbaseatroomtemperatureallowinghighyieldstobeachievedaftershortreactiontimes.Howevertheywerelessusefulforarylchlorides.Itwasfoundoutthatthecouplingreactionsoccurredontheexternalsurface

144ChemicalReviews,2007,Vol.107,No.1ofthezeolites.Thesolidcatalystcouldbereusedafterregeneration(Table21).

Table21.Pd(II)-NaY-andPd(0)-NaY-CatalyzedSuzukiReactions

Pd(II)-NaYPd(0)-NaYAr-XAr′yielda(%)yielda(%)

4-MeOC6H4IC6H5>994-MeOC6H4BrC6H593(92)953-MeOC6H4BrC6H5972-MeOC6H4BrC6H5

85C6H5Br

4-MeC6H4(94)984-CNC6H4BrC6H590(78)1004-NO2C6H4BrC6H54-AcC6H4BrC6H5>5499(44)(88)51714-AcC6H4ClC6H526b

4-CF3C6H4Cl

C6H5

52b

a

GCyield,isolatedyieldsinparenthesis.bAt100°C.

Asafurtherwaytosolid-supportedPdcatalysts,thecomplexesPdCl2[Ph2P(CH2)4SO3Na]orKweredirectlyloadedtoalkylsulfonatedmesoporoussupports.Theresultingheterogeneouscatalystwasappliedtothecouplingof4-iodoanisolewithphenylboronicacid.118,119Itcouldberecycledandreused.Remarkably,therecycledcatalystsshowedanenhancedactivity.

2.4.PdonModifiedSilicaSilica-supportedPdcatalystsusefulforSuzukiandalsoothercross-couplingreactionscanbepreparedinvariouswaysprovidingdifferentstructures.Thus,Pdcandirectlybedepositedontosilica,oritcanbeanchoredasacomplexbyligands,whicharecovalentlylinkedtothesilica.Inthelattercase,postmodificationofmesoporoussilicaorsilicaspheresispossible,forexample,bygraftingaligand(suchasSH)separatedbyaspacer.Pd(II)finallyformsacomplexwiththissolid-supportedligand.Asanalternative,itisalsopossibletouseaPdcomplexwithareactivelinkersubstituent,whichcancovalentlybindtothemesoporoussilica.Asafurthermethodofcatalystpreparation,asol-gelmethodcanbeappliedusingtetraalkoxysilaneandaPdligand(e.g.,OHorstablecarbene)bearingaspacer-separatedfunctionalgroup,whichisabletoreactwiththetetraalkoxy-silane.Anamorphousmaterialisformed,whichistreatedwithPd(OAc)2toprovideacatalystonamorphoussilica.Inthesecases,Pdismainlyencapsulatedinthesilicamatrix.AhighlyactivePdcatalystonamorphoussilica(SiO2/TEG/Pd)forSuzukicouplingswaspreparedviaPdnano-particlesobtainedfromPd(PPh3)4intetra(ethyleneglycol)andtetramethoxysilane,whichbecomeencapsulatedinasilicamatrix.120Itwasefficientincouplingofaryliodidesandarylbromidesbutnotactiveenoughtowardarylchlorides.Thereusabilitywastestedinthecouplingofphenylboronicacidandmethyl4-bromobenzoate.Thecatalystcouldbereusedthreetimeswithoutlosingactivity(Scheme13).Pd(II)onsilicafixedbymercaptopropylligandsusingmercaptopropylsiloxanewaspreparedonmesoporoussilica(Pd-SH-FSM)andonamorphoussilica(Pd-SH-SiO2).TheactivityofthedifferentrecycledcatalystsPddepositedwereintheorderPd-SH-FSM>Pd-SH-SiO2>onnonfunctionalizedmesoporoussilica.ObviouslytheSHligandspreventformationoflessactivePdaggregates.In

YinandLiebscherScheme13.PreparationofSiO2/TEG/PdandItsUseasCatalystinSuzukiReactions

particular,Pd-SH-FSMhadbeenshowntoactasanactive,stable,andrecyclableheterogeneouscatalystsfortheSuzukireactionof4-bromoanisoleandphenylboronicacid.47

SuzukicouplingoflessreactivearylchloridesandbromidescouldbeachievedwithaPdcatalystonanothermercaptopropyl-modifiedmesoporoussilica(SBA-15-SH-Pd,Table22).121Itcouldbereusedfourtimeswithoutanylossofcatalyticactivity.Severalheterogeneitytests(hotfiltrationexperiments,three-phasetests)indicatedthatthemajorityofthecatalysis(>95%)occurredonthesupportedPd,butleachingwasalsofoundtoalowextent.

Table22.SBA-15-SH-Pd-CatalyzedSuzukiReactions

TtyieldaentryAr-X

solvent(°C)(h)(%)1chlorobenzene

DMF100246724-chloroacetophenoneH2O

100249634-bromoacetophenoneDMF/H2Ob80898c44-bromoacetophenoneH2O

80598d53-bromopyridineDMF/H2Ob90159864-bromotolueneDMF/H2Ob90158274-bromoanisole

H2O9015968

4-bromobenzaldehyde

H2O

90

15

97

a

Isolatedyield.bDMF/H2O(20:1).cRecyclesof1,2,3,and4gaveyieldsof97%,97%,95%,and95%.dRecyclesof1,2,3,and4gaveyieldsof99%,97%,96%,and92%.

Similartomercaptopropylligands,aminopropylligandsweregraftedtoamorphoussilicabyreactionwiththecorrespondingaminopropyltriethoxysilane.ThesemodifiedsilicawereloadedwithPdnanoparticlesbytreatingwithPd(OAc)2.ThesecatalystsworkedwellinSuzukireactionofarylbromideswitharylboronicacids(K3PO4,toluene,100°organicC)whenmodifiers.chelating122diaminesAnoptimalandcatalysttriaminescouldwerebeusedreusedasfourtimeswithoutasignificantlossofactivity,buttheactivitydecreasedinfurtherruns.

Electron-richimidazolidinecarbenePd(II)complexes54couldbegraftedontomesoporoussilicaviaapropyltri-ethoxysilanelinker(Scheme14).122,123Theresultingcatalyst55exhibitedexcellentactivityinSuzukicouplingofnon-activatedchloroarenes(Table23).123Thecatalystwasstableandcouldbereused.

Anotherveryeffectivecatalyst60(SiO2-OC-Pd)wasobtainedbyCorma,Garcı´aetal.bygraftingapreformedoxime-carbapalladacyclePd(II)complex58ontosilicausingamercaptopropyllinker(Scheme15).124Thecatalystpro-videdaquantitativeyieldintheSuzukireactionofp-chloroacetophenoneandphenylboronicacidinwater;leach-

HeterogeneousPdCatalyzedC−CCouplingReactionsScheme14.SynthesisofCarbene-PdComplexesFixedtoModifiedSiO2

Table23.SuzukiReactionsofChloroareneswithPhenylboronicAcida

Rcatalystyieldb(%)AcPd(OAc)2/5390Pdcomplex5586cOCH3Pd(OAc)2/5393Pdcomplex5588cCH3Pd(OAc)2/5391Pdcomplex5585cCHO

Pd(OAc)2/5397Pdcomplex55

90c

a

Reactionconditions:1.0mmolofchloride,1.5mmolofPhB(OH)2,3mLofdioxane.bIsolatedyield.cFourthrun.

ingwasnotfound,andthesamecatalystsamplewasreusedeighttimeswithoutdecreasedactivity(Table24).124

Scheme15.PreparationofSiO2-OC-PdCatalyst60

Table24.SiO2-OC-Pd-CatalyzedSuzukiReactionsinAqueousMedia

conditionsXt(h)conv(%)water/TBABBr162waterBr<0.1>99waterCl0.2591watera

Cl299water/dioxane(3:2)

Cl

0.25

55b

a

Catalystwasreusedeighttimes.bBiphenylwasdetectedasbyproduct.

Silica-supportedimidazole-palladacyclesSiO2-IM-Pd-H62andSiO2-IM-Pd-Me63(Figure2)exhibitedexcellentcatalyticactivity,recyclability,andstabilityinSuzuki-Miyauracouplingofarylbromidesandphenylboronicacid

ChemicalReviews,2007,Vol.107,No.1145(Table25).125,126Thecatalystshadverylowloadingofpalladiumandwereconsideredtobecompletelyheteroge-neousunderthereactionconditions.

Figure2.SiO2-IM-Pd-H,62,andSiO2-IM-Pd-Me,63.

Table25.SuzukiReactionsCatalyzedbyModifiedSiO2-SupportedPdComplexes

R

catalystt(min)yielda(%)H62(1.2mol%)18095CN62(1.2mol%)12092Cl62(1.2mol%)18088OMe62(1.2mol%)36079CH2Br62(1.2mol%)36060H63(0.4mol%)90100OMe63(0.4mol%)12092CN63(0.4mol%)6097PhCO63(0.4mol%)9095OH

63(0.4mol%)

90

85

a

GCyield.

Theimine-basedpalladacyclicsilico-supportedcatalysts65and66(Figure3)werefoundtobelessactiveinSuzukireactionsofarylbromideswithphenylboronicacidthantheirhomogeneouscounterparts.Thesecatalystsalsoexhibitedpoorrecyclabilityprobablybecauseoftheinstabilityofthecomplexliberatingzero-valentPdspeciesinthesolutionbyreductiveelimination.127

Figure3.Imine-basedpalladacycliccatalysts65and66.

2.5.PdonClaysandOtherInorganicMaterialsSepioliteclaysupportedPd(Pd(II)-sepiolite)couldeasilybeobtainedbytreatingtheclaywithaqueous[Pd(NH3)4]-Cl2anddryingundervacuum.IteffectivelycatalyzedtheSuzukicouplingofphenylboronicacidwitharylhalidesinDMFincludinglessreactiveelectron-richarylbromides(Table26).128ThecatalystexhibitedaremarkablyhighTON,andthuslowamountsofcatalystwerenecessary(0.02mol%).

Theunusuallyhighreactivityofelectron-richbromoarenesincomparisonwiththecommonlymuchmorereactiveelectron-poorbromoarenes(entries3-5versusentries6-7)suggeststhattheoxidativeadditionofarylhalidetothePd-catalystcannotbetherate-determiningstepinthesecases.Shimizuetal.alsoappliedPd(II)-sepiolitetotheSuzukicouplingof4-bromophenolwithphenylboronicacidorsodiumtetraphenylborateinwateratroomtemperatureinair.129ItprovidedhigheryieldsthanunsupportedPd(II)saltsandsomeothersupported-Pdcatalysts(Scheme16).

146ChemicalReviews,2007,Vol.107,No.1Table26.Pd(II)-Sepiolite-CatalyzedSuzukiCouplingofArylHalideswithPhenylboronicAcid

cat.GCentry(mol%)arylhalideT(°C)yield(%)TON10.02C6H5I10080400020.02C6H5Br

10081405030.024-NH2-C6H4Br10077

385040.024-MeO-C6H4Br10085(84)a425050.023-Cl-C6H4Br10091455060.024-Ac-C6H4Br10083415070.024-NO2-C6H4Br10091455080.14-Ac-C6H4Cl1002323090.001C6H5Br

1306565000100.0014-MeO-C6H4Br130565600011

0.001

4-Ac-C6H4Br

130

94

94000

a

Yieldofcycle2.

Scheme16.ComparisonofVariousCatalystsinSuzukiReactionof4-BromophenolwithPh4BNa

Pd(1.8%)onunmodifiedsilicacouldbeusedinaflowinjectionmicroreactorintheSuzukireactionof4-bromoben-zonitrilewithphenylboronicacidwithouttheadditionofanextrinsicbase.Thecatalystshowedalowleachrateandprovidedyieldsofabout67%.26

Clay-supportedPdcatalysts(Pd-PIC)canbeobtainedbyintercalationusingclayandPdCl2/Ph4P+Br-.ItprovidedgoodyieldsinSuzuki-Miyaurareactionsofaryliodidesorarylbromideswitharylboronicacids(Scheme17).130

Scheme17.Pd-PIC-CatalyzedSuzuki-MiyauraReactions

TreatmentofCa-deficienthydroxyapatiteCa9(HPO4)-(PO4)5(OH)(Ca/P)1.50,HAP-1)withanacetonesolutionofPdCl2(PhCN)2yieldedahydroxyapatite-supportedPdcatalyst(PdHAP-1),whichwashighlyefficientinSuzukicouplingofvariousarylbromideswithphenylboronicacid(Scheme18).131NoPdleachingwasobserved,andthecatalystcouldberecycled.

Mg-Al-layereddoublehydroxide(LDH)couldalsosuccessfullybeusedassolidsupportforPdasshownby

YinandLiebscherScheme18.PdHAP-1-CatalyzedSuzukiReactions

Choudaryetal.66Theligand-freeLDH-Pd(0)catalystswerepreparedbyanexchangeofPdCl42-followedbyreductionandexhibitedhighactivityinSuzukireactionsofchloro-arenes(Table27),aswellasinHeck,Sonogashira,andStillecouplings.Thecatalystshowedalmostconsistentactivityandselectivityincouplingreactionsofchlorobenzeneandphenylboronicacidafterreusingitinfivecycles.Itcouldalsobeappliedundernonaqueousionicliquidconditions.

Table27.LDH-Pd(0)-CatalyzedSuzukiCouplingofChloroareneswithArylboronicAcids

RAryield(%)HPh

93(92)aH3-NO2-Ph90H4-Me-Ph60H2-Naph80H

4-F-Ph704-OMePh

904-Ac

4-Me-Ph

88

a

UnderNAIL(nonaqueousionicliquid)conditions,8h.

3.HeckReactions3.1.PdonCarbon(Pd/C)TheHeckreactionisthemostpowerfulandwidelyusedmethodtocouplealkeneswithorganicmoietiesbearingasuitableleavinggroupsuchasahalide,atriflate,oradiazonium.Pd/Cwasappliedtothisreactioninthepioneer-ingworkofJuliaetal.asearlyasin197360,132andhasbeenthemostimportantheterogeneouscatalystsincethen,becauseitisefficientandcommerciallyavailable.Inthisearlyreport,styrenewasreactedwitharomaticchloridesandiodides.About50%yieldwasachievedinthemostfavorablecases.Itreached62%yield(82%conversionofstyrene)inpuremethanolat120°Candinanautoclaveunderpressure.Remarkably,itwasfoundthattheadditionoftriphenylphos-phine,whichisacommonligandinhomogeneousHeckreaction,inhibitsthereactionratherthanpromotingit(Scheme19).ThereforeitisnotsurprisingthatlateronPd/CwasusedinHeckreactionswithoutadditionalligands.

Scheme19.Pd/C-CatalyzedHeckReactionofChlorobenzenewithStyrene

Pd/C-catalyzedheterogeneousHeckreactionhasbecomesomaturedthatitisappliedinthecouplingof1-bromo-4-methoxybenzenewithoctylacrylate6,30fortheindustrialproductionofoctyl4-methoxycinnamate75,acommonUV

HeterogeneousPdCatalyzedC−CCouplingReactionsabsorberutilizedinthemanufactureofsunscreenlotion(Scheme20).

Scheme20.HeckReactionof1-Bromo-4-methoxybenzenewithOctylAcrylate

Ko¨hleretal.providedaverydetailedinvestigationabouttheapplicationofPd/CintheHeckreactionofarylbromideswitholefins.28,50AvarietyofPd/CcatalystsdifferinginPddispersion,Pddistribution,Pdoxidationstate,andwatercontentweretested.Theexperimentalresultsindicateda(quasi-)homogeneousreactionmechanism,thatis,thePdcomplexorcolloidalparticlesinsolutionactasthecatalyti-callyactivespecies.E105CA/W5%PdfromDegussaAGturnedouttobethebestPd/Ccatalyst.IthasahighPddispersion(36%),alowreductiondegree[mainlyPd(II)],andahighwatercontent(∼55%).ItshighcatalyticactivityinN-methylpyrrolidone/sodiumacetateat140°Callowedworkingwithextremelylowcatalystconcentrations(Table28).AnargonatmospherehelpstodecreasethePdleachingwhilemaintainingthehighactivity.Undertheseoptimizedreactionconditions,turnovernumbers(TON)upto-361000andturnoverfrequencies(TOF)upto18000h(forbromobenzene)wereachievedusingaPdconcentrationaslowas0.0025mol%(Table28,entry3).Completeconversionwasachievedforactivated(electron-withdrawingsubstituents)andnonactivated,aswellasdeactivated,bromoarenes(electron-donatingsubstituents)withinafewhours.Theextraordinarilyhighactivityseemstobecon-nectedwithdissolution-reprecipitationprocesses,wheredissolvedPdspeciesformedatthistemperaturearetheactivespecies.Muchlowercatalyticactivity(TONandTOFreducedbymagnitudes)inHeckcouplingwasfoundwithpre-reducedPd/Ccatalysts(Table28,entries4and5)inaccordancewithpreviousfindings.11

Table28.EffectofReactionConditionsontheHeckReactionofArylBromideswithStyrene81

catalystconvyielda

(%)entryR(mol%)T(h)(%)767778

TONTOF

1Ac0.00549690051920048002H0.005190831618000180003H0.0025290831636000180004bH1.0205852055835cH1.02012100112<16Cl0.056100921720003337OMe0.05292801918409208

OMe

0.01263630772003600

a

YieldsfromGLCanalysis.bReducedunderH2atmosphereat300°Cfor1h.cTreatedunderN2atmosphereat500°Cfor1h.

EvidencefordissolvedPdspeciesformedbyleachingfromPd/CbeingtheactivemoietiesinHeckreactionswasalsofoundbyAraiandco-workers11incaseofaryliodidesinN-methylpyrrolidoneinthepresentoftriethylamineorNa2-CO3asbase.However,almostalldissolvedPdspeciesre-depositedontothesurfaceofthesupportafterthereactionhadbeencompleted.Thus,thecatalystswererecyclable

ChemicalReviews,2007,Vol.107,No.1147withoutlossofactivity.Lowactivitiesanddehalogenationwereobservedforarylbromidesandarylchlorides.Ontheotherhand,4-nitrochlorobenzeneandvinylalkyletherasmorereactivereactantscouldbecoupledintoluene/triethyl-amineunderpressure,butwithlowregioselectivity(Scheme21).133-135Theseconditionswerealsosuccessfulinthecouplingofaroylchlorideswithbutylvinylether(Scheme21).133-135Inthesecases,alsootherheterogeneousPdcatalystswereinvestigated,showingthatthetypeofsolidsupportaffectstheregioselectivityofthecoupling.51,136However,theheterogeneouscatalystswerelessregioselectivethanthehomogeneoussystembasedonPd(OAc)2.

Scheme21.Pd/C-CatalyzedHeckReactionsofVinylAlkylEthers

AdvantageoverhomogeneouscatalysiswasfoundwithPd/CintheHeckreactionof4-and2-iodopyrimidines83and85withmethylacrylate.137Highyieldswereobtainedandhomocouplingwasnotobserved(Scheme22).

Scheme22.Pd/C-CatalyzedHeckReactionsofIodopyrimidineswithMethylAcrylate

TheapplicationofultrasoundinPd/C-catalyzedHeckreactionscanbeadvantageousasdemonstratedforthereactionofiodobenzenewithmethylacrylateinNMP.138Therateofthereactionincreasedandthecatalystshowedhighactivityunderambientconditions(airandmoisture).Itcouldbeconvenientlyseparatedfromthereactionmixtureandreused(Scheme23).

Scheme23.HeckReactionofIodobenzenewithMethylAcrylateunderUltrasound

AsshownbyBellerandKu¨hlein,heterogeneousPd/CcatalysiscanalsobeappliedtotheHeckreactionofaryldiazoniumsalts88.139Excellentyieldswereobtainedwithacrylateasreactantwithoutusingabaseorphosphineligand(Table29).Interestingly,nodifferenceinreactivityinrelationtotheelectronicnatureofthediazoniumcompoundwasobserved.ThiseffectmakesitverylikelythatforthistypeofHeckreaction,contrarytothereactionofarylhalides,

148ChemicalReviews,2007,Vol.107,No.1Table29.Pd/C-CatalyzedHeckReactionsofDiazoniumSaltswithAcrylates

a

Isolatedyield.

theinsertionofthepalladiumcatalystisnottherate-determiningstep.

Ionicliquidshaveattractedgrowinginterestasenviron-mentallybenignreusablesolvents.140,141Becauseoftheirhighlypolarnature,theyarepromisingactivatingandstabilizingsolventsforPd/C-catalyzedHeckreactions(Table30).12Thereactionwascarriedoutsimplybyheatingasolutionofanarylsubstrate,anolefin,andabaseinanionicliquid([bmim]PF6)with3mol%of10%Pd/C.Pd/Cdispersedwellin[bmim]PF6.Afterthereaction,theproductwasextractedsimplybystirringwithn-hexaneordiethyletherseveraltimesfollowedbydecantationoftheupperorganiclayer.Noaqueousworkupwasrequired.ThePd/Cwaskeptandsuspendedcompletelyintheionicliquidlayeraftertheextraction.

Table30.Pd/C-CatalyzedHeckReactionsofArylHalideswithEthylAcrylateinIonicLiquids

Ar,XT(°C)t(h)yield(%)Ph,I

1001924-Me-Ph,I10012534-MeO-Ph,I10012694-Ac-Ph,I1002465Ph,Br

14012404-NO2-Ph,Br14012853-Cl-Ph,Br14012524-MeO-Ph,Br

140

12

25

Aryliodidesgavehigheryieldsthanbromides.Aryltriflatesresistedthereactionandwererecoveredcompletelyevenat140°Cwithorwithoutaphosphineligand.12SincePd/Cremainedonlyinionicliquid,theionicliquidcontainingPd/Ccanbereusedascatalystsystemitself(Table31).Althoughacertaindecreaseinyieldswasobservedafterthesecondreuse,probablyduetoaccumulationoftriethylam-moniumiodide(Table31,entries3-5),washingtheionicliquidlayerwithwaterrecoveredthecatalyticactivitytothesamelevelasinthefreshsystem(entry6).

Itwasfoundbyinductivelycoupledplasma(ICP)emissionspectroscopythatafterfiltrationofthePd/CtheconcentrationofPdbeforeandaftertheHeckreactionwasnegligible.TheauthorsconcludedthattheHeckreactionwascatalyzedbythePdatthesurfaceofPd/C.

YinandLiebscherTable31.Pd/C-CatalyzedHeckReactionsofIodobenzenewithEthylAcrylateinIonicLiquidbyaRecyclableCatalyticSystementryrecyclesT(°C)t(h)yield(%)1010012952110012933210012844310012815410012806a

5

100

12

95

a

Catalyticsystemwaswashedwithwaterbeforeuse.

Pd/C-catalyzedHeckarylationof2-methylprop-2-en-1-olwith1-tert-butyl-4-iodo-benzeneinanionicliquidresultsintheformationofthefragrance󰀁-Lilial91.69Higheractivitywasobservedinionicliquidmedia,andthecatalystcouldbereusedwithonlymarginaldecreaseinyieldandselectivity(Table32).

Table32.Pd/C-CatalyzedHeckReactionof

1-(tert-Butyl)-4-iodobenzenewith2-Methylprop-2-en-1-olinIonicLiquids

runconv(%)select.(%)

196962949539593491935

93

92

InHeckreactionscatalyzedwithPd/C,ionicliquidmethodologycanbecombinedwithmicrowaveheating.68Thereactionwasconductedinanopensystemwith5%Pd/Cascatalyst.Modesttogoodyieldsofcouplingproductswereobtainedinshortertimes(Table33).Thereactivityofthehalobenzenesfollowedtheusualsequence,thatis,electron-withdrawingsubstituentsincreasethereactivityandelectron-donatingsubstituentsdecreaseit.Iodoarenesreactfasterthanbromoarenes,whilechloroarenesonlyreactifsubstitutedbystrongelectron-withdrawinggroups(entries9-11).Allofthereactionswentsmoothlyandthe(E)-butylcinnamates92weretheonlyproducts.Reactiontimesareveryshort,andthecatalystsystemcouldbereused.

Table33.Pd/C-CatalyzedHeckReactionsinIonicLiquidbyMicrowaveIrradiation

entryArXt(min)yielda(%)1Ph

I1.58622-MeO2C-PhI1.5353Ph

Br1.58044-NO2-PhBr1.58954-Ac-PhBr1.561

64-OMeBr1.530(56)b74-MeBr1.53382-NaphBr1.5799Ph

Cl2.00b

104-NO2-PhCl2.027(42)b11

4-CHO-Ph

Cl

2.0

0

a

Isolatedyield.bUnder375Wofmicrowaveirradiation.

HeterogeneousPdCatalyzedC−CCouplingReactionsAsanothertechniqueworthmentioning,thePd/Ccatalystiskeptinaseparateliquidtriphasesystem.Inisooctane/water/Aliquat336(methyltrioctylammoniumchloride),142itwasfoundthattherateofHeckcouplingofaryliodideswitholefinswasaccelerated10-foldinthepresenceofAliquat336.BothwhenconductedinA336assolventandwhenconductedinanisooctane/A336/watertriphasicmixture,theHeckreactionofaryliodideswithelectron-deficientolefinsproceededwithhighyieldsandselectivities(Table34).

Table34.TriphaseHeckCouplingofArylIodideswithEthylAcrylatea

yieldentryRA336T(h)(%,GC)1Hno1.5520172Hyes1.530209434-NO2nob6.01044-NO2yesb3.07854-Acyes208064-Clyes207874-OMeyes206884-NH2yesb20689

3-CN

yes

20

81

a

Reactionconditions:aryliodide(1.0mmol),ethylacrylate(1.5mmol),Et3N(1.5mmol),Pd/C(0.05mmol),10mLofisooctane,5mLofwater,A336(0.30mmol).bSincethesubstrateisinsolubleinisooctane,toluenewasused.

PdongraphitewaspreparedbyreductionofPdCl2byC8Kandcouldbeused(7mol%catalyst)inHeckreactionsofacrylates,fumarates.andstyrenewitharylorvinyliodidesinthepresenceoftributylamine.143

3.2.PdonMetalOxidesThefirstreportaboutaheterogeneousHeckreactionusingPdsupportedonmetaloxidewaspublishedbyKanedaetal.in1990.144Chlorobenzenewascoupledwithstyreneinmethanolat150°CusingPd/MgOascatalystandNa2CO3asbase.Lateronseveralmetaloxides(MgO,Al2O3,SiO2,TiO2,ZrO2,ZnO,mixedMgLaO,etc.)havebeenusedassupports)I,Br,Cl,forOTf,PdcatalystsCOCl,SOinHeckreactions.Ar-XwithX2Cl,orN2BF4werecoupledwithacrylates,12,19,38,55,67,145-147acrylonitrile,52,53,55styrene,20,21,55,146,147vinylalkylether,51,55,136terminalalkenes,55andcycloal-kenes.27Biffisandco-workersreviewedpalladiummetalcatalystsinHeckreactionsin2001.10

Mostapplicationswereperformedunderligand-freeconditions.DetailedstudiesofKo¨hlerandco-workersoncatalystefficiencyandonoptimizationofHeckreactionofbromobenzenewithstyrenecatalyzedbysolid-supportedPd(5%Pd(w/w)inDMF/NaOAc,140°C,20h)revealedthefollowingorderofeffectiveness:20,21

Pd/C>Pd/TiO2>Pd/ZrO2>Pd/MgO>Pd/ZnO>

Pd/SiO2

AdifferentorderwasfoundinHeckcouplingofiodobenzenewithacrylonitrileinthepresenceofPPh3(5%Pd,Et3Nasbase,CH3CN,140°C,14h)byWaliandco-workers:52

ChemicalReviews,2007,Vol.107,No.1149Pd/MgO>Pd/γ-Al2O3>Pd(acac)2>Pd/C>

Pd/CaCO3

Ko¨hlerandco-workersreportedforthefirsttimethatspecificallypreparedheterogeneousPd/MOxcatalysts(M)metalcenter)convertedevennonactivatedarylchloridesintostilbenesinHeckreactionswithstyrene.Shortreactiontimesandremarkablylowamountsofcatalystsweresufficient.85,148Thehighlyactivepalladiumspeciesweregeneratedinsitubydissolutionfromthesupportandstabilizedagainstagglomerationbyreprecipitationonthesurface.Theseprocessescouldbecontrolledbyaspecificchoiceofcatalystandtuningthereactionconditions.Evidencewasfoundthatthesolidcatalystfunctionsasareservoirformolecularpalladiumspeciesinsolution.Theirconcentrationinsolutioncorrelateswiththeprogressofthereactions.Kineticinves-tigationoftheHeckreactionofbromobenzenewithstyreneshowedthatonlyalittlepalladiumleachedtothesolutioninthestartingperiod.Afterthereactiontemperaturereached140°C,21aboutone-thirdofthepalladiumwasleachedfromthesurfaceofthesupport.Simultaneously,themajorityofthearylhalidewasconverted.Afterthereactionwasfinished,thepalladiumwasre-depositedontothesupporttoagreatextent.

Analogousinvestigationswereperformedwithdifferentarylchloridesundermodifiedconditionsaffordingcompa-rableresults(Table35).148

Table35.HeckCouplingofArylBromidesandChlorideswithStyrene

cat.conc.T(°C),convyieldentryR,Xcatalyst[mol%]baset(h)(%)(%)1H,BrPd/TiONaOAc140,495862H,Br2a0.0011Pd/Al0.0009NaOAc140,496873bAc,ClPd/Al2O3a0.01Ca(OH)160,298904bAc,Cl2O3aPd/Al0.01Ca(OH)2160,287835Ac,Cl2O3cPd/NaY0.005Ca(OH)2160,299956bH,ClPd/NaY0.05Ca(OH)2160,649457bH,ClPd/NaY0.05Ca(OH)2160,68583d8b

Me,Cl

Pd/NaY

0.05

Ca(OH)22

160,6

40

36d

a

PrecipitationofPd(OH)2onMOx.bAdditionofTBAB.cPreparedbycoprecipitation.dUnderO2atmosphere.

ArecentlydevelopedPdcatalystonMg-LamixedoxideturnedouttobesuperiorforHeckcouplingofactivatedandinactivatedaryliodides,bromides,andchloridesevenatlowtemperatures(80°C)underambientatmosphere(Scheme24).55HighE/Zratiosofproducts95wereobservedinmostcases,dependingonthenatureofalkene.Thesolventhadadeterminanteffectontheyield.Thecatalystcouldbereusedwithoutadditionalactivationfourtimeswithoutasignificantlossofactivityandcouldbestoredunderairwithoutproblems.

Scheme24

150ChemicalReviews,2007,Vol.107,No.1MicrowaveirradiationcanbeappliedtoHeckreactioncatalyzedbyPdonseveralmetaloxidesasshowninthecouplingofiodobenzenewith1-decene.52Slightlyhigheryieldswereachievedinthemicrowave-mediatedsolventlessHeckreactionofaryliodideswithmethylacrylateinthepresenceofpalladiumonKF/alumina(Scheme25).

Scheme25.PalladiumonKF/Al2O3CatalyzedHeckReactionsunderMicrowaveIrradiation

TheapplicationofnonaqueousionicliquidscanbeadvantageousinheterogeneousHeckreactions.Silica-supportedpalladiumcomplexes(Pd(II)/SiO2)exhibitedhighercatalyticactivityinHeckreactionsofaryliodideswithacrylatesinanionicliquid([bmim]PF6)thaninDMF(Table36).67

Table36.Pd(II)/SiO2-CatalyzedHeckReactionsofArylIodideswithAcrylatesUsingIonicLiquids

RR′solventt(h)conv(%)HMe[bmim]PF6198HMeDMF

188HBu[bmim]PF6170HBuDMF

1674-MeEt[bmim]PF62994-MeEtDMF

2784-OMeEt[bmim]PF66794-OMeEtDMF

6854-AcEt[bmim]PF66334-Ac

Et

DMF

6

99

Pdcomplexescanalsobesupportedbyironoxide-silicananoparticles.ThusaPdcatalystconsistingofmagneticmaghemite(γ-Fe2O3),silica,andatetheredheterocycliccarbene(imidazole)ligand(Fe2O3-Si-Pd)gavegoodresultsinHeckreactionsofaryliodidesorarylbromideswithn-butylacrylate(Table37,seealsoFigure1).110

Table37.Maghemite-SilicaNanoparticle-SupportedPd-CatalyzedHeckReactions

isolatedRXyield(%)2-MeI90a2-MeBr883-OMeI893-OMeBr904-Ac

I

88

a

GC-analysisrevealed97%yieldinthefirstrunand97%,95%,94%,and92%inthesecondtofifthrounds,respectively.

Silicasol-gelencagedPd(PPh3)2Cl2couldbeusedasarecyclablecatalystwithoutlossofcatalyticactivityinHeckreactionofaryliodideswithstyrene.149ItwaspossibletocombinetheHeckreactionwithsubsequentphotocyclizationinaone-potprocessaffordingphenanthreneandchrysene99(Scheme26).149

YinandLiebscherScheme26.One-PotSynthesisofPhenanthreneandChrysenebyHeckCouplingandPhotocyclization

3.3.SupportsPdonMicroporousandMesoporousPdonmolecularsievesascatalystsinheterogeneousHeckreactionswasfirstinvestigatedbyMehnertandYing.15,145Palladiumcatalystssupportedonaniobium-modifiedme-soporoussilicalite(Nb-MCM-41)werepreparedbyvaporgrafting.ThesemesoporousmaterialsshowedremarkableactivityinHeckreactionsofbromoareneswithelectron-withdrawingsubstituentsinp-position.

Pappandco-workerspreparedaheterogeneousligand-freePd-MCM-41system,whichcouldbeusedasanefficientandrecyclablecatalystinHeckreactions.Palladiumloadingsof1.39%,3.0%,and5.85%showedhighactivityandselectivityintheHeckcouplingofiodobenzenewithstyrene(conversionsof76-84%,selectivitiesof84-87%)andmethylacrylate(89-100%conversionsand100%selectivi-ties).146Moreover,thesecatalystsperformedwellinHeckreactionsofactivatedbromoarenes(4-bromonitrobenzeneand4-bromoacetophenone).Inallreactions,complete(E)-selectivitywasobserved.R-Couplingwasobservedasasidereactioninthecaseofstyrene.Itwasfoundthatthecatalystactivitiesdependonpalladiumloadingandmetaldispersion.Inmostcases,catalyticperformanceof3.0%Pd-MCM-41withlowerPddispersionshowedloweractivity.AseriesofotherbromoareneswereinvestigatedintheHeckcouplingofstyreneandmethylacrylateusing1.39%Pd-MCM-41catalyst(Table38).Importantly,thecatalystsarestableunderthereactionconditionsandretainhighactivityandselectivityforatleast20successiverunswithouttheneedtoexcludeairormoisture.146

Table38.HeckReactionofBromoarenesover1.39%Pd-MCM-41Catalysta

ArRt(h)conv(%)select.(%)PhCO2Me38696Ph

Ph693934-CN-PhCO2Me39793Ph690954-MeO-PhbCO2Me382944-MeO-PhbPh691894-Br-PhcCO2Me3100934-Br-PhcPh685924-Cl-PhCO2Me3641004-Cl-PhPh654911-NaphCO2Me31001001-NaphPh610092pyrid-3-ylCO2Me2294100pyrid-3-yl

Ph

22

57

93

a

Conditions:1equivofArBr,1.2equivofalkeneandNa2CO3,0.2equivofBu4NCl,and0.3mol%Pd.bWithoutBu4NCl.cWithoutBu4NCl,withNaOAcasthebase.

HeterogeneousPdCatalyzedC−CCouplingReactionsDjakovitchandKo¨hlerstudiedaseriesofpalladiumcatalystsobtainedbyionexchangeatNa-orH-zeolites(mordenite,Y)withPd(NH3)4Cl2.Pd-modifiedzeolitesexhibitedahighactivitycomparabletohomogeneouscatalysistowardtheHeckreactionofarylbromideswithstyreneforsmallPdconcentrations.10,16-18,21,27Thezeoliteobviouslycontrolledtheselectivityofthereaction.16Reactiontemperatureplaysanimportantrole.Nosubstantialleachingwasobservedinmostcases.ButevidencefordissolvedmolecularPdspeciesbeingresponsibleforthecatalysiswasfound.27Thecatalystscouldbeeasilyseparatedfromthereactionmixtureandreuseduptofivetimeswithoutaconsiderablelossinactivity.SomeoftheresultsaresummarizedinTable39.16,18ThecatalystcouldalsobeappliedtoHeckcouplingof4-chloroacetophenonebutdidnotperformsowellevenathighertemperatures.18

Table39.HeckReactionofVariousArylBromideswithAlkenesbyPd-ZeoliteCatalysts

TGLCyielda(%)Pd-zeoliteR

R′

(°C)101102103[Pd(0)]-NaY

FPh14089.4(86.0)0.98.2[Pd(NH3)4]2+-NaYFPh10014085.193.0(80.1)(80.9)1.01.07.98.810094.5(89.5)0.76.7[Pd(OAc)2]-NaYFPh14079.2(81.2)0.97.2[Pd(NH3)4]2+-NaYOMePh10014057.681.2(39.9)(75.8)0.49.53.99.5[Pd(NH3)4]2+-NaYNOPh[Pd(NH3)4]2+-NaYH2Ph14014094.884.9(89.8)(75.8)1.10.74.16.5[Pd(NH3)4]2+-NaYHBuO14025.720.412.4[Pd(NH3)4]2+-NaY

H

CO2Me140

91.0(69.4)0.50.4

a

Isolatedyieldsinparenthesis.

K+-andCs+-exchangedX-zeolitescontainingPdCl2(bifunctionalcatalysts)developedbyGarciaandco-workersallowedimplementationoftheHeckreactionofiodo-andbromobenzenewithstyreneintheabsenceofanextrinsicbase.49Obviously,sitesofthesupportactasbaseinthesecases.Noleachingwasobserved.Theactivityoftheusedcatalystcouldberegainedtoalargeextentbyreactivationbywashingwithwater.Asanalternativetostyrenes104,theformationof1,1-diphenyletheneregioisomercanbefavoredbyhighPdloadings(Scheme27).TheauthorsalsoinvestigatedtheeffectofporesizeandPdloadingofdifferentzeolitesonthecatalyticactivity.WhenDMFwasusedassolvent,thecatalyticactivitywasmainlyattributedtoleachedPd.

Scheme27

IncontrasttotheconclusionsofDjakovitchandKo¨hlertothenatureofcatalysisofPdonzeolites(molecularPdspeciesinsolution,Videsupra),Damsandco-workers.61,150andOkumura84etal.assumedthattheheterogeneousnature

ChemicalReviews,2007,Vol.107,No.1151ofthecatalysiswithPd-zeolitesinHeckreactionslargelydependedonthepretreatmentofthecatalyst,theoxidationstateofPd,thesolvent,andthebase.ForacriticalreviewaboutthissubjectfavoringhomogeneouscatalysisasthegeneralmodeofactionseeJonesetal.36TheexcellentperformanceofPd(0)/HYwasattributedtotheformationofstablePd13clusterskeptinsidethesupercageofHY.84ThiscatalysthadtobegeneratedbycalcinationinO2andreductionbyH2beforeitcouldbereused.Withtributylamineasthebaseintoluene,theHeckolefinationY,ZSM-5)withPd-(NH3)42+-zeolites(0.4wt%Pd;mordenite,andPd(0)-mordenite(0.4and4wt%Pd)wereconcludedastrulyheterogeneous.61,150Pdleachingfromthezeoliteswasevaluatedinaverystrictfiltrateactivitytest.ItwasclearlyrelatedtothepresenceofoxidizedPd(II)inanall-oxygenenvironment,thatis,ionicPd(II)orPdO.Theheterogeneousreactionswiththezeolite-supportedcatalystcanbeacceler-atedbytheadditionofaquaternaryammoniumsaltpromoter.ThecatalyticactivityofPd-zeolitesinHeckreactionfollowedtheorder

Pd(NH2+3)4-Y>Pd(NH3)2+4-mordenite>

Pd(NH3)2+4-ZSM-5

Pdonporousglassservedasauseful,reusablecatalystforHeckreactionofiodobenzeneand4-bromoacetophenonewithstyreneandallylicalcoholallowingthereactiontobecarriedoutinthepresenceofair.24

3.4.HybridPdSupport)onModifiedSilica(Organic−InorganicOrganochemicallymodifiedsilicacanalsoserveassolidsupportforPdcatalysts.Silicawasmodifiedbyvariouschlorohydrosilanes(trichloro-,dichloromethyl-,chlorodi-methyl-,dichlorophenyl-,andchlorodiphenylsilane).Theresultingmaterials,whichweremodifiedatthesurfacebymethylorarylgroups,weretreatedwithsaturatedsolutionsofPdCl2inmethanoltoformdifferentPd-on-silicacatalystswithvariousPdloadings(Pd/SiO2Me,Pd/SiO2Me2,Pd/SiO2-Ph,Pd/SiO2Ph2).

Pd/SiO2PhexhibitedhighcatalyticactivityintheHeckreactionofaryliodidesandbromideswithstyreneormethylacrylate(Table40).151,152Thecatalystcouldberecoveredandreused.

Table40.CatalyticPerformanceof0.3%Pd-SilicaCatalystsinHeckCoupling

Pdcat.R1,XR2t(h)conv(%)select.(%)

Pd/SiO2MeH,ICO2Me28499Pd/SiO2Me2H,ICO2Me25499Pd/SiO2PhH,ICO2Me29799Pd/SiO2Ph2H,ICO2Me25199Pd/SiO2MeNO2,BrCO2Me210099Pd/SiO2Me2NO2,BrCO2Me26899Pd/SiO2PhNO2,BrCO2Me210099Pd/SiO2Ph2NO2,BrCO2Me26699Pd/SiO2MeAc,BrCO2Me26799Pd/SiO2PhAc,BrCO2Me27599Pd/SiO2MeH,IPh55886Pd/SiO2Ph

H,I

Ph

5

80

83

Asanalternativetomercaptopropylmodification,alsoarsanopropylormethylselenoundecylgroupswereintroduced

152ChemicalReviews,2007,Vol.107,No.1intosilicaandallowedtoactassolidsupportforPdasshownbyCaietal.(Figure4).Inallthesecases,thePdis

Figure4.Threekindsofmodifiedsilicasupportedpalladiumcatalysts.

complexedbythedonoratomsoftheorganicmodificationofthesilica(S,As,Se).ThesecatalystsexhibitedhighactivityandselectivityintheHeckcouplingofaryliodidesandbromides(Table41)andcouldeasilybeseparatedandreused.153-156

Table41.HeckReactionCatalyzedby“Si”-X-Pd(0)Complexa

cat.X(concn,yieldbentrymol%)R,XR′T(°C)t(h)(%)ref1SH(0.4)H,IPh1006921532SH(0.4)OMe,IPh1006901533SH(0.4)H,ICO2H1006951534SH(0.4)OMe,ICO2H1006921535As(0.6)H,IPh1006921546As(0.6)NO2,BrPh14012751547As(0.6)H,ICO2H1006941548As(0.6)NO2,BrCO2H14012791549As(0.6)H,ICO2Bu10069015510As(0.6)NO2,BrCO2Bu140127815511As(0.6)H,ICO2NH210069015512As(0.6)NO2,BrCO2NH2140127615513Se(0.4)H,ICO2Bu10069015614Se(0.4)NO2,BrCO2Bu140127815615Se(0.4)H,ICO2NH210068915616

Se(0.4)

NO2,Br

CO2NH2

140

12

83

156

a

Reactionconditions:arylhalide(5mmol),olefin(5.5mmol),andBu3N(6mmol)in1.0mLofp-xyleneorDMFwereused.Whenarylbromidewasused,PPh3(0.05mmol)wasadded.bIsolatedyield.

MesoporoussilicawasmodifiedbymercaptopropylsilaneandtransformedintoPd(II)complexes(Pd-SH-FSMandPd-SH-SiO2).Suchsolid-supportedPdcomplexescanactasactive,stable,andrecyclableheterogeneouscatalystsintheHeckreactionsof4-bromoacetophenoneandethylacrylate.47ThekineticresultsobtainedwiththefreshPdcatalystsexhibitedthefollowingorderofcatalyticactivity:

Pd-SH-FSM)Pd-FSM>Pd-SH-SiO2)Pd/C>

Pd-Y

ForthefreshPd-SH-FSMcatalyst,TONandTOFwereobtainedas73000and36000h-1,respectively.The“hotfiltrationtest”demonstratedthatPd-SH-FSMwasatrueheterogeneouscatalyst.Pd-SH-FSMandPd-SH-SiO2showedexcellentrecyclabilityintheHeckreactionof4-bromoacetophenonewithethylacrylate(Table42).46Thecatalystscouldbereusedatleastfivetimeswithnoindicationofdeactivation.YinandLiebscherTable42.HeckReactionUsingRecoveredCatalysts

yielda(%)yielda(%)cycle(Pd-SH-FSM)

(Pd-SH-SiO2)

fresh9284firstreuse9593fifthreuse

97

95

a

DeterminedbyGC.

Mercaptopropyl-modifiedmesoporoussilicaPdcomplex,SBA-15-SH-Pd,121andaminopropyl-modifiedmesoporoussilicaPdcomplexes,SBA-15-NH2-Pd121orY-NH2-Pd,157werealsoefficientreusablecatalystsinHeckreactionsofnonactivatedarylbromidesoriodobenzene(Table43).

Table43.SBA-15-ModifiedPdCatalystsfortheHeckReactions121a

entry

R,Ycatalyst(loading)yield(%)1H,BrSBA-15-SH-Pd(1%)952COMe,BrSBA-15-SH-Pd(0.5%)963COMe,Brreusedfromentry2934H,ISBA-15-NH2-Pd(1%)965

H,Br

SBA-15-NH2-Pd(1.5%)

97

a

Reactionconditions:1mmolofhalide,1.5mmolofolefin,2mmolofNaOAc.

Silicawasalsomodifiedbytetherediminepallada-cycles158,159orSCS-N-pincercomplexes48(Figure5)toprovidesolidsupportsforPdinHeckcouplingreactions.ThesecatalystsexhibitedhighcatalyticactivityinHeckreactionsofaryliodidesandactivatedarylbromidesandcouldbereusedwithoutsignificantlossofactivityandselectivity(Table44).

Figure5.Fourkindsofmodifiedsilicatetherediminepallada-cycles.

Asanotherpossibility,reversephasesilicaobtainedbytreatmentwithalkyltrimethoxysilanescanbeusedassolidsupportforPd.Triarylphosphinesservedasexternalligandsinthesecases.Highyieldswereachievedwitharyliodideorbromides(Scheme28).160

PdnanoparticlesencapsulatedinsilicamatricescouldbegeneratedfromPd(PPh3)4inamixtureoftetra(ethyleneglycol)(TEG)andtetramethoxysilaneandfinaltreatmentwithwater.120Duringthisprocess,PPh3wasoxidizedtothetriphenylphosphineoxide,whichwasrecoveredfromthefinalfiltrateofthecatalystpreparationinmorethan90%

HeterogeneousPdCatalyzedC−CCouplingReactionsTable44.HeckReactionsbyModifiedSilicaSupportedIminePalladacyclesa

T(°C),conventryR,Xcatalystsolventt(h)(%)1H,ISiO2-IM-Pd-HMeCN82,2482(0.2mol%)2H,ISCS-N-pincerDMF120,2933OMe,IPd-2QC

NMP130,398(0.01mol%)4OMe,IPd-2PC

NMP130,399(0.01mol%)5Me,IPd-2QC

NMP130,1100(0.1mol%)6Me,IPd-2PC

NMP130,1100(0.1mol%)7NO2,BrPd-2QC

NMP130,195(0.1mol%)8NO2,BrPd-2PC

NMP130,190(0.1mol%)9Ac,BrPd-2QC

NMP130,151(0.1mol%)10Ac,BrPd-2PC

NMP130,146(0.2mol%)11H,BrPd-2QC

NMP130,2432(0.2mol%)12

H,Br

Pd-2PC

NMP

130,24

30

(0.1mol%)

a

Entry1isfromref158;entry2fromref48;othersarefromref159.

Scheme28.PreparationofReversePhaseSilicaSupportedPalladiumCatalystsandTheirApplicationtoHeckReactions

yield.Thisheterogeneouscatalyst(SiO2/TEG/Pd)showedhighactivityintheHeckcouplingreactionsofaryliodideswithstyrene(Scheme29).120

Scheme29.SiO2/TEG/Pd-CatalyzedHeckReactionofArylIodidewithStyrene

AsanotherwayoffixingPdtomesoporoussilicaSBA-15,SiHgroupswereintroducedbyreactionwithtrimethoxy-silane,whichreducePd(OAc)2.AsshownbyShietal.,thisprocedureresultsinthedepositionofmetalcolloidlayersontheporewalls,creatingoneofthemostactivehetero-geneouscatalystsforHeckreactions.147,161Excellentyieldswereachievedinthecouplingofiodo-andbromoareneswithstyreneormethylacrylate,evenwhenlowamountsofcatalystwereusedandthecouplingwascarriedoutinair(Scheme30).Thecatalystcouldeasilybeseparatedbyfiltrationandreusedatleastfivetimeswithoutasignificant

ChemicalReviews,2007,Vol.107,No.1153Scheme30

lossofactivity.Indicationsforheterogeneitywerefound,althoughsmallamountsofleachedPdcouldbedetectedinthereactionmixtureofthefirstrun.

3.5.PdonClayandOtherInorganicMaterialsMg-Al-Layereddoublehydroxidesupportedpalladiumnanoparticles(LDH-Pd(0)),developedbyChoudaryetal.,servedasversatilecatalystsinligand-freeHeckcouplingsofvarioussubstitutedchloroarenesandolefinsundernon-aqueousionicliquid(NAIL)conditions(Table45).66Thereactivityofthesechloroarenesiscorrelatedtotheelectrondensityofthearomaticring.ThecatalystwasreusedforfivecyclesintheHeckolefinationof4-chloroanisolewithstyreneundermicrowaveandthermalconditions.Thehigheref-ficacy,asdisplayedinthenonaqueousionicliquidundermicrowaveconditions,isascribedtotheionicconductance.

Table45.LDH-Pd(0)-CatalyzedHeckOlefinationofChloroarenesunderNonaqueousIonicLiquid(NAIL)Conditions

MW(400W)

thermalheatingR1R2t(h)yield(%)t(h)yield(%)HPh0.5953098NO2Ph0.5961095AcPh0.5931597CHOPh0.5951598BzPh0.5911593OMeCO2Bu1854086OMePh1804076MePh0.5923096CH2OH

Ph

0.5

90

30

92

Apalladium-containingsilicoaluminophosphate-31(Pd-SAPO-31)wasdevelopedbySrinivas,Ratnasamy,etal.asahighlyactivecatalystfortheHeckreactionsofaryliodidesandchlorides(Scheme31).86Thecatalystwasfoundtobemoreeffectivethanothersolid-supportedPdcatalysts(Pdoncarbon,MgO,Al2O3,orgraphite).Itworkedwellatrelativelylowtemperatures(60-120°C)andallowedcompletionofthereactionsinshorttimes(about1.5h).Pdleachedduringthereactionbutre-depositedtothesolidsupportwhenthereactionhadfinished.Thecatalystcouldberecoveredbysimplefiltrationandreusedwithoutasignificantlossofactivityorselectivityforaminimumofthreecycles.

Scheme31.HeckReactionCatalyzedbyPd-ContainingSilicoaluminophosphate-31

InanefforttocomparethereactivityofLDH-Pd(0)withthoseofotherheterogeneouscatalysts,namely,Pd/C,Pd/SiO2,resin-Pd(0),andPd/Al2O3,intheHeckolefination,correspondingexperimentswereconductedunderidentical

154ChemicalReviews,2007,Vol.107,No.1conditionswiththesamereactants.TheactivityintheHeckolefinationof4-chloroanisolewasfoundintheorder66

LDH-Pd(0)>resin-Pd(0)>Pd/C>Pd/Al2O3>

Pd/SiO2

Theseresultsindicatedthatthebasicsupport(LDH)facili-tatedtheoxidativeadditionofPd(0)with4-chloroanisoleandeventuallytheHeckolefinationreaction.

AllresultsofmechanisticexperimentsreinforcedthattheHeckolefinationof4-chloroanisoleoccursexclusivelyandwithiodobenzenepredominantlyonthesurfaceofthepalladiumnanoparticlepresumablyatdefectsites.TheplausiblemechanismproceedssimilarlytothatinthehomogeneousphaseinvolvingthePd(0)/Pd(II)cycle(Scheme32).ThenanopalladiumundergoesoxidativeadditionwithhaloarenestoaffordArPdX,asisevidentfromXPSandTGA-MSstudies.TheC1sXPSspectraoftheusedcatalystsshowextralinesaccountingfortheotherpossibleintermedi-ates.

Scheme32.PlausibleMechanismforthe

LDH-Pd(0)-CatalyzedHeckOlefinationofChloroarenes66

Thus,palladiumstabilizedonthebasicsupportLDHenablesevendeactivatedchloroarenestoundergoHeckreactions.ThebasicLDHsurfaceincreasestheelectrondensityofthePdcentertopromotetheoxidativeadditionofchlorobenzenetothePd(0),resultinginahigheractivity.Amontmorillonite-supportedPdcomplex(montmorillo-nite-ethylsilyldiphenyl-phosphine-palladium)servedasahighlyactivecatalystinHeckcouplingofaryliodideswitholefins.162,163Usingthiscatalyst,iodobenzenecoupledwithstyreneandvariousacrylatesinquantitativeyieldand95%(E)selectivity.Whenacrylonitrilewassubjectedtoarylation,adoublearylatedproduct113wasobtainedasanexceptionalcase.Itwasalsofoundthatcouplingofsubstitutediodo-benzeneswithphenylvinylacetateaffordedvariousunsym-metrical(E)-stilbenes114inhighyields(Scheme33).163Thecatalystcouldbereusedwithoutanynoticeabledeactivation.Hydroxyapatite-supportedpalladium(PdHAP-1)wasdem-onstratedasanoutstandingcatalystfortheHeckreactionofarylbromideswithstyreneorn-butylacrylate(Table46).131TherecycledPdHAP-IhadtheoriginalmonomericPd(II)

YinandLiebscherScheme33.HeckReactionsCatalyzedbyMontmorillonite-PdComplex

structureandwasrecyclablewithretentionofitshighcatalyticactivity.Pdleachinginthefiltratecouldnotbedetected.Therefore,itislikelythattheHeckreactionproceedsonthePdHAP-1surface,thatis,notwithdissolvedpalladiumspecies.ItwassuggestedthattheHeckreactiondoesnotproceedviaatraditionalPd(0)/Pd(II)cyclebutviathePd(II)/Pd(IV)mechanism.73,164,165Butthisbecameques-tionableinthelightoflaterresults.36,74,75

Table46.PdHAP-1-CatalyzedHeckReactionsofArylBromidesandOlefins

RR′t(h)yielda(%)

TONHPh249447000OMePh249045000AcPh209648000HCO2Bu209145500OMeCO2Bu249447000Ac

CO2Bu

20

98

49000

a

GCyields.

Asfurthersolid-supportedPdcatalystsusefulforHeckreactions,Pd/CaCO143,1683,139,166Pd/BaSO4,139PdonGaAs(001),167Pdongraphite,Pdonsingle-walledcarbonnanotubes(SWNT),169andPdonhydrocalcite170havetobementioned.Thelatterwasnotusefulforarylchloridesbutcouldberecycled.Interestingly,thereactionwasfasterwiththerecycledcatalystthanwiththefreshone,whichwasexplainedbyanincreaseinsurfaceareaofthecatalyst.PdCl2onsepiolitesallowedHeckcouplingofbromoben-zeneandiodobenzenewithstyrenetoberunintheabsenceofanadditionalbase.57Reusageofthecatalystwaspossible,however,withaconsiderablelossofactivity.ItissupposedthatthebasicsitesofthesupportgetblockedbythehydrohalidesformedasbyproductsintheHeckreaction.Reactivationbysteamingofthecatalystbeforereusewasadvantageous.Evidenceforheterogeneouscatalysiswasfoundbythehotfiltrationtest.

4.SonogashiraReactions4.1.PdonCarbon(Pd/C)4.1.1.InAnhydrousMediaEarlyinvestigationsofPd/C-catalyzedSonogashiracou-plingbyGuzmanandco-workers171revealedthatarylbromidescoupledwithtrimethylsilylacetylene,phenylacety-

HeterogeneousPdCatalyzedC−CCouplingReactionslene,andbutyneinthepresenceofPPh3andCuIinananhydrousmixtureoftriethylamineandacetonitrile(Table47).Remarkably,theyieldsofproductsarehigherthanthosereportedundersomehomogeneousPd(0)catalysis.ThusPd/C-PPh3-CuIhasbeendevelopedasanefficientcatalyticsystemforSonogashiracouplingreactions.Thissystemcanalsobeappliedinthesynthesisofsomeethynylpyridines(Table47,entries8,9).Interestingly,2-bromopyridine172couldbecoupledwith2-(3-hydroxy-3-methyl-but-1-ynyl)-substitutedpyridines117and118toformdipyridylethynes119and120.The2-hydroxy-2-propylgroupsaresplitoffbyGrobfragmentationunderthebasicconditions(refluxinNaOH/Et3N/MeCN)(Scheme34).

Table47.Pd/C-CatalyzedSonogashiraCouplingofArylBromideswithAcetylenes

a

Isolatedyield.

Scheme34.Pd/C-CatalyzedOne-PotSynthesisofDipyridylethynes119and120

Pd/CcatalysisisusefulfortheSonogashiracouplingofs-triazines121173andinthepyran-2-oneseries174wherechlorideorbromide,respectively,servedasleavinggroups(Tables48and49).

Aheterogeneousprotocolfortheligand-freeSonogashirareactionthatemployedPd/Casacatalystandaresin-bound

ChemicalReviews,2007,Vol.107,No.1155Table48.Pd/C-CatalyzedSonogashiraCouplingofChlorotriazines121withAlkynes173

halideR′

T(°C)t(h)yield(%)121a121aPh

65121acyclohexyl6570121an6586657540121aCMeEtOH-Bu

121asCMe-Bu110651447025121a829020121a1-OH-cyclohexyl2OH

824066121bCH822692121b

CMe2CHMeOH1-OH-cyclohexyl

2OH

82265082

4848

6290

Table49.Pd/C-CatalyzedSonogashiraCouplingof4-Bromo-6-methylpyran-2-onwithAlkynes174

yieldyieldentryR(%)entryR

(%)12n3n-Pr729954n-Bu77104-AcNH-Ph955n-Pen79114-NO356TMS-hexyl81124-Ac-Ph2-Ph7Ph

827413CH141-OH-cyclopentyl2OAc

1-OH-cyclohexyl610848

CHCH2OH902OTHP

81

51516

9-OH-9-fluorenylestradiol-17R-yl

85

tertiaryamineasbasewasparticularlyusefulforthefacileisolationofpolarnucleosidecouplingproductsobtainedfromiodonucleosideswithprotectedpropargylamines(Table50).175

Aselectivecouplingwithvariousalkyneswasachievedinthe4-positionof5-bromo-4-chloropyrimidines125(Scheme35).176TheremainingbromosubstituentcouldbeexchangedbyasecondalkynewithinasubsequentSonogashiracoupling.Position5wasattackedfirstbySonogashirareactionofcorresponding4-chloro-5-iodopyrimidines.176

4.1.2.InOrganicSolvent/WaterMixturesOrganicsolvent/watermixturesprovideagenerallyuseful,robust,andefficientmediumforPd/C-catalyzedSonogashiracouplings.K2CO3isusuallyusedinthesecases.ThusDME-waterwasusedtocouplearyliodidesandbromidesbearingeitherelectron-donatingorelectron-withdrawingsubstituents(Table51).177,178

Thismethodologycouldalsobeappliedtoheteroaromatichalidesandtriflates178,179providingexcellentyieldsofcouplingproducts127(Table52).

Itwasfurtherusedasthekeysteptosynthesizetheenantiomericallypure(S)-5-ethynyl-3-(1-methyl-2-pyrrolidi-nyl)-pyridine130(SIB-1508Y)asanovelenantiopurenicotinicacetylcholinereceptoragonist(Scheme36).178-179,180ThecouplingofN-propargylaminoacids131witharylorR-aminoheteroarylacidsbromides132,whichprovidescouldanbeeasyfurtheraccesshydrogenatedtounnaturalto133(Scheme37).181ItshouldbementionedthatnoneofthetypicalconditionsofhomogeneoussourcesofPd(0)[Pd-(PPh3)2Cl2,Pd(PPh3)4,Pd2(dba)3]weresuccessfultosynthe-sizethepyridinecross-couplingproduct132(Ar)3-py-ridyl).

156ChemicalReviews,2007,Vol.107,No.1Table50.SonogashiraCouplingofDeoxynucleosideDerivativesa

a

Standardconditions:10%Pd/C(5mol%),alkyne(2equiv),CuI(20mol%),AmberliteIRA-67(5equiv),DMF(0.1M),50°C.b

Isolatedyield.

Scheme35.Pd/C-CatalyzedSonogashiraCouplingof4-Chloropyrimidines

Table51.Pd/C-CatalyzedSonogashiraCouplingofArylHalideswithSubstitutedAlkynes

XRR′yield(%)Br3-CHOCMe2OH98Br4-NO2CMe2OH92I3-NH2CMe2OH78Br2-CNCMe2OH89Br2-CNCH2NMe2

92I4-OH1-cyclohexenyl50I

4-CO2H

1-cyclohexenyl

80

Recently,weappliedthemethodologyofPd/C-catalyzedSonogashiracouplinginaqueousmediaforthesynthesisof

YinandLiebscherTable52.SonogashiraCouplingofHeteroaromaticHalideswithSubstitutedAlkynes

Scheme36.Pd/C-CatalyzedSynthesisofSIB-1508Y

Scheme37.Pd/C-CatalyzedSynthesisofCompounds133

ω-functionalizedalkynylpyrazolo[1,5-a]pyrimidines135start-ingfrom3-iodopyrazolo[1,5-a]pyrimidines134aspotentialcalcineurininhibitors(Table53).182ItturnedoutthatPd/CwasadvantageousoverothercommonlyusedhomogeneousPd(II)orPd(0)catalysts[Pd(PPh3)2Cl2,Pd(PPh3)4,andPd-(OAc)2]inanumberofcases.

Inthecaseofapplicationof4-tosyloxybutyne(entry11),thecouplingproductwasobtainedinonly18%yieldtogetherwithitseliminationproduct3-(3-buten-1-ynyl)pyrazolo[1,5-a]pyrimidine136in36%yield(Scheme38).182

Asanefficientwaytointroduceadimethylaminopropylchainintoapyrazolering,Pd/C-catalyzedSonogashiracouplingof3-iodopyrazole137withN,N-dimethylpropargyl-aminewasused,followedbycatalytichydrogenation.183Pd/Cwasappliedinbothsteps.Remarkably,catalysiswithPd-(PPh3)2Cl2andCuIcompletelyfailed,whilePd/C,PPh3,andCuIprovidedquantitativeSonogashiracoupling(Scheme39).SimilarphenomenawereobservedbyFairlambetal.inSonogashirareactionsof4-bromo-6-methyl-2-pyrone.184

HeterogeneousPdCatalyzedC−CCouplingReactionsTable53.Pd/C-CatalyzedSonogashiraCouplingof3-Iodopyrazolo[1,5a]pyrimidines

entryR1R2R3Ryielda(%)1PhMePhCH2NMe2702HPhPhCH2NMe2913MePhPhCH2NMe2764p-Cl-PhMePh

CH2NMe2695PhMep-Cl-PhCH2NMe2546HPhPhCH2OH787PhMePhCH2OH728PhMePhCH2CH2OH719HPhPhCH2CH2OH7510MePhPhCH2CH2OH7011

Ph

Me

Ph

CH2CH2OTs

18b

a

Isolatedyield.bEnyne136(36%)wasisolated.

Scheme38.Pd/C-CatalyzedCouplingof134awith4-Tosyloxybutyne

Scheme39.Pd/C-CatalyzedSonogashiraCouplingof3-Iodopyrazole137

Couplingofhaloareneswith3-butyn-1-olinthepresenceofPd/C,PPh3,andCuIprovidedtheexpectedSonogashiracouplingproduct,whilehomogeneouscatalysisbyPdCl2-(PPh3)2/NEt3gave1-aryl-4-hydroxy-1-butanonesandderiva-tives,obviouslybyadditionalhydration.185

AsanalternativetoK2CO3,diisopropylaminecanbeusedasbaseinSonogashiracouplinginDMA-waterasreportedbyKotschyandco-workers(Table54),79buttheyieldswerenotveryhigh.ThePd/Ccatalystcouldberecoveredandreused.Afterthereaction,justminoramountsofpalladiumhadleachedfromthesupport.

Asafurthersolventsystem,waterand2-aminoethanolprovedtobeuseful.186Avarietyofterminalalkyneswerecoupledwitharyliodidesandbromidespossessingfunctionalgroupstogivethecouplingproducts141ingoodtoexcellentyields(Table55).

4.1.3.CouplingCopper-FreeandLigand-FreeSonogashiraInmostcasesofPd/C-catalyzedSonogashiracoupling,CuIandphosphineligands(PPh3)wereapplied.ButtherewerecasesreportedwhereaPd/C-catalyzedSonogashirareaction

ChemicalReviews,2007,Vol.107,No.1157Table54.Pd/C-CatalyzedSonogashiraCouplingofArylHalideswithAlkynesinDMA-Water/Diisopropylamine

Ar

Xalkyne(R)yield(%)2-pyridylBrCH2CH2OH582-pyridylBrn-Bu622-pyridylBrCMe2OH653-pyridylBrCH2CH2OH773-pyridylBrn-Bu813-pyridylBrCMe2OH693-tolylBrCH2CH2OH443-tolylBrn-Bu263-tolylBrCMe2OH484-tolylBrCH2CH2OH464-tolylBrn-Bu314-tolylBrCMe2OH512-pyridylCln-Bu542-pyridylClCMe2OH514-CN-Ph

Cl

n-Bu

0

Table55.Pd/C-CatalyzedSonogashiraReactionsinWaterand2-Aminoethanol

R1

XR2t(h)yielda(%)H

ICMe2OH9782-CH2CO2EtIPh

15934-SMeBrCMe2OH8774-MeBrCMe2OH9844-MeBrCHEtOH6774-CHOBrCHMeOH10854-CHOBrCHPhOH9594-AcBrCMe2OH9694-AcBrCH2CH2OH5.5854-Ac

Br

Ph

572CMe2OH1580bCHEtOH

15

82b

a

Isolatedyield;allreactionswerecarriedoutinwaterand2-ami-noethanol(3equiv).bAcetonitrile-H2O(1/1)wasusedassolvent.

wassuccessfulintheabsenceofphosphineligandsorevenintheabsenceofbothphosphineligandsandCuI.

Inthesynthesisof(()-tashiromine,Batesandco-workersreportedaPd/C-catalyzedSonogashiracouplingwithoutphosphineligand.187Methyl2-chloronicotinatewascoupledwith2-prop-2-ynyloxytetrahydropyrantogivethepyridylalkyne142in83%yield(Scheme40).

Scheme40.Pd/C-CatalyzedSonogashiraCouplingofMethyl2-Chloronicotinate

Ko¨hlerandco-workersreportedthePd/C-catalyzedSo-nogashiracouplingofiodobenzenewithphenylacetylenewithouttheadditionofCuIorPPh3(Table56).81Goodyieldswereachieved.Conversionsupto74%werefoundafter30minusingPdconcentrationsofonly0.125mol%(Table56,entry6;TON)592,TOF)1184).Theadditionof

158ChemicalReviews,2007,Vol.107,No.1Table56.Pd/C-CatalyzedSonogashiraCouplingofIodobenzenewithPhenylacetylene

catalystconvyieldaentry(mol%)solventbaset(h)(%)%)10.50piperidinepiperidine6776120.50pyrrolidinepyrrolidine6888030.125DMApyrrolidine61007740.125NMPpyrrolidine6968050.125DMApyrrolidine179546

0.125

DMA

pyrrolidine

0.5

74

53

a

DeterminedbyNMR.

CuIwastestedaswell.However,thisdidnotresultinhigherreactivitiesorselectivities.Largeramountsofcopperevendecreasedactivityandselectivity.

AconvenientmethodforCuI-freePd/C-catalyzedSono-gashiracouplingofarylchloridesandbromidesisbasedonaninsituhalogenexchangebyaiodidesourcesuchasanalkaliiodide,termedasHALEX-SonogashirareactionbyRothenbergetal.188Pd/CworkedbestascomparedwithPdonothersolidsupports(Al2O3,BaSO4)orhomogeneousPd-(0).ThePd/Ccatalystcouldbereusedatleastfivetimeswithoutsignificantdecreaseofyields(Scheme41).

Scheme41.Pd/C-CatalyzedCuI-FreeSonogashiraCouplingofArylChloridesandBromidesinthePresenceofKI(HALEX-SonogashiraReaction)

FurtherfacilitationofPd/C-catalyzedSonogashiracouplingispossiblebycircumventingligands,CuI,andamineandbyworkingunderanoninertatmosphere.Undertheseconditions,arangeofaromaticiodidescouldbecoupledwithaliphaticandaromaticalkynesusingcommerciallyavailable1%Pd/C(0.2mol%)ascatalyst,i-PrOH-H2O(1:1),andNa3PO4‚12H2Oasbaseat80°C(Table57).189Aryliodides

Table57.Amine-andCopper-FreeSonogashiraCouplingofArylIodideswithTerminalAlkynesCatalyzedbyPd/C

entryRR′t(h)productyielda(%)

1NO2CH2CH2OH2145a792AcCH2CH2OH5145b803OMeCH2CH2OH5145c374HCH2CH2OH5145d455NO2Ph3145e986AcPh2145f987OMePh6145g608HPh

6145h679NO22-CF3-Ph2145i9610Ac2-CF3-Ph2145j9411OMe2-CF3-Ph5145k8812H2-CF3-Ph5145l9613NO24-MeO-Ph5145m9814Ac4-MeO-Ph3145n9415OMe4-MeO-Ph6145o6016

H

4-MeO-Ph

6

145p

72

a

Isolatedyields.

YinandLiebscherbearingelectron-withdrawingsubstituents(NO2,Ac)gavealmostquantitativeyields(entries5,6,9,10,13,14),whilesomewhatloweryieldswereobtainedintheothercases.ThepotentialadvantagesofthePd/Ccatalystsystem,thatis,theeaseofseparationandfacilerecyclingofthemetalandthelowlevelofmetalcontaminationintheproduct,suggestthatacopper-,ligand-,andamine-freeSonogashiracouplingprotocolbasedontheuseofaPd/Ccatalystsystemwouldbeofmajorinterestforbothindustrialandacademicapplications.

4.2.PdonMetalOxidesAmagneticmaghemite(γ-Fe2O3)-silicananoparticle-supportedSi-PdPd-catalyst,nitrogen-seeheterocyclicalsoFigurecarbene1)wasappliedcomplex(Fe2O3-inSonogashirareactionsofaryliodidesorbromideswithphenylacetyleneprovidinghighyieldsofcouplingproducts146(Table58).110

Table58.Maghemite-Silica-Nanoparticle-SupportedPd-CatalyzedSonogashiraReactions

RXGCyield(%)

isolatedyield(%)

2-MeI94a892-MeBr94913-OMeI96883-OMeBr95934-Ac

I

96

91

a

Thefirstroundyield;thesecondtofifthroundyieldswere91%,90%,91%,and89%,respectively.

4.3.SupportsPdonMicroporousandMesoporousIn2004,DjakovitchandRolletreportedeffectivehetero-geneousSonogashirareactionsusingpalladiumzeolites[Pd-(NH3)4]2+/NH4Yundercopper-freeandligand-freeconditions(Table59).190,191OmissionofcopperisadvantageoustosuppressGlaser-typecouplingofthealkynesassidereaction.Lateron,microporous[Pd(NH3)4]2+/NaY(preparedbyimpregnationandcalcinationofzeolite)andmesoporous[Pd]-SBA-15(preparedbygraftingaphosphineligandtosilica)werepreparedandusedashighlyreactiveandselectivecatalystsincopper-freeSonogashiracouplings(Table59).58Bothcatalystsshowedexcellentstabilitytowardleaching.Thelatterwasfoundtobemorereactive.Itcouldalsobeappliedintransforminglargesubstrates(2-bromonaphtha-lene,10-bromoanthracene)becauseofitslargerporesize.Remarkably,thesecatalystsweremorereactivethanPd/CbutlessreactivethanhomogeneousPdcatalysis(Table59,footnotec).Recyclingandreuseofthecatalystwaspossiblebutwithaconsiderablelossofactivityinthefirstreuse.Sincenochangeinthestructureofthesupportcouldbedetected,thelossofreactivityisprobablyattributedtochangesofthecomplexedphosphineligand.Aryliodidesandactivatedarylbromidesgavealmostquantitativeyields(Table59).Thecatalystwasstableandrecyclable.Amor-phoussilicacouldalsoserveassolidsupportbutwaslessmuchlesseffective.58

PdonporousglasstubingprovidedhighyieldsinCu-freeSonogashirareactionsofiodo-andbromoarenesor2-bromopyridinewithalkynes.24

HeterogeneousPdCatalyzedC−CCouplingReactionsTable59.[Pd(NH3)4]2+/NH4Y-CatalyzedCopper-FreeSonogashiraReactions

[Pd(NH3)4]2+/[Pd(NH3)4]2+/

NH4YNaY

[Pd]SBA-15ArXR

yielda(%)yieldb(%)yieldb(%)Ph-I

Ph1004-MePh-IPh100(82)4-AcPh-IPh100(85)2-NO2Ph-IPh100(89)2-MePh-IPh82(67)

Ph-I

CtC-80(57)

CH2O-TMS

Ph-BrPh45c734-MePh-BrPh304-AcPh-BrPh100

2-Naphthyl-BrPh0100(99)10-Anthryl-BrPh0100(76)2H-pyran-2-one-Ph100(95)

100

4-yl-tosylate

a

GCyields;isolatedyieldsinparentheses.b

Conversion;isolatedyieldsinparentheses.cYield85%(GC)with[Pd(PPh3)2]Cl2,73%(GC)with[Pd]SBA-15,20%(GC)with[Pd(II)]/NaY,and3%(GC)withPd(0)/C.

4.4.PdonModifiedSilicaThecatalystobtainedbyencapsulationofpalladiumnanoparticlesinasilicamatrix(SiO2/TEG/Pd)showedhighcatalyticactivityintheSonogashiracouplingofmethyl4-iodobenzoatewithphenylacetylene(Scheme42).120Phos-phinesasligandswerenotnecessary.AnothertypeofPdcatalystonsilicawasobtainedwhen3-aminopropyl-modifiedsilicagelwasfunctionalizedwithphosphineligandsandtransformedintoastableimmobilizedpalladiumcomplex(Scheme36).Thiscatalystwassuccessfullyappliedinaseriesoffast,copper-freeSonogashiracouplingreactions(Scheme43).192

Scheme42.SiO2/TEG/Pd-CatalyzedSonogashiraReaction

Scheme43.ModifiedSilicaSupportedPalladiumCatalyzedCopper-FreeSonogashiraCoupling

4.5.PdonClayandOtherInorganicMaterialsLayereddoublehydroxidesupportedpalladiumnanopar-ticles(LDH-Pd(0))allowedSonogashiracouplingofchlo-roarenestobecarriedoutunderCu-freeconditions(THF/water,NEt3)andprovidedhighactivity(Table60)66Evenelectron-richchloroarenescouldbecoupledinthisway(Table60,entry2).Thecatalyst(1mol%)wasusedinfive

ChemicalReviews,2007,Vol.107,No.1159cyclesandshowedconsistentactivityinthecouplingofphenylacetyleneandchlorobenzene.Nonaqueousionicliq-uids(NAIL)couldalsobeusedforthiscatalyticsystem(Table60,entry1).

Table60.LDH-Pd(0)-CatalyzedSonogashiraReactionofChloroareneswithPhenylacetylene

a

UnderNAILconditions.

5.Stille,Fukuyama,andNegishiReactions5.1.StilleReactions5.1.1.PdonCarbon(Pd/C)Liebeskindandco-workers193,194reportedPd/C-catalyzedStillecross-couplingreactions.TheprotocolwasoptimizedbytheadditionofCuIascocatalystandtheligandAsPh3[Pd/C(0.5mol%),CuI(10mol%),AsPh3(20mol%)]toallowthereactiontooccuratareasonableratewithavarietyofsubstrates.BesidestheadvantageofusingastableformofPd(0),theyieldsoftheproductsundertheseconditionswerebetterthanthoseobtainedusingPd2(dba)3asthesourceofPd(0)(Table61).Theuseofvinylhalidesandtriflatesaswellasarylhalideswaswelltolerated.However,arylfluorosulfonatesandaryltriflatesperformedpoorlyundertheseconditions(20-30%conversion)duetocompetingtriflatehydrolysis.

Asanalternativetohalidesorsulfonates,hypervalentiodoniumsaltswereusedinPd/C-catalyzedStillecouplingsasreportedbyKangandco-workers.Thereactioncanconvenientlybecarriedoutatroomtemperatureinaqueousacetonitrile(Table62).195

5.1.2.PalladiumonKF/Al2O3SolventlessStillereactionsonpalladium-dopedKF/Al2O3wereinvestigatedundermicrowaveirradiation(Scheme44).108

5.1.3.PdonModifiedSilica(SiO2/TEG/Pd)ThecatalystSiO2/TEG/Pdconsistingofpalladiumnano-particlesencapsulatedinasilicamatrixshowedhighcatalyticactivityintheStillecouplingofaryliodideswithallyltribu-tylstannane(Scheme45).120

5.2.FukuyamaReactions5.2.1.PdonCarbon(Pd/C)CouplingoforganozincreagentswiththiolesterstoketonescanbecatalyzedbyPd/C.Thismethodologywasappliedtothealiphaticorganozinccompound159bySekiandco-workers196representingthefirstexampleofcouplingofsp3-hybridizedorganometallicsinthepresenceofhetero-

160ChemicalReviews,2007,Vol.107,No.1Table61.Pd/C-CatalyzedStilleCross-Coupling193

a

Isolatedyieldofpureproduct.b5mol%Pdwasused.cReference194,95°C.

Table62.Pd/C-CatalyzedCouplingofOrganostannaneswithHypervalentIodoniumSalts

geneousPd/C(Scheme46).Itisworthmentioningthatnopoisoningofthecatalystoccurredbythereleasedthiol.The

YinandLiebscherScheme44.SolventlessStilleReactionsbyPalladium-DopedKF/Al2O3

Scheme45.SiO2/TEG/Pd-CatalyzedStilleReaction

Scheme46.Pd/C-CatalyzedFukuyamaReactionsinVariousSolvents

additionofapolaraproticsolventsuchasDMA,NMP,orDMF(4%v/v)improvedtheyieldconsiderably,probablybecauseofdeaggregationoftheorganozinccompound.TheseoptimizedconditionswereappliedtotheFukuyamareactionofaseriesofotherthiolesters161(Table63).

Table63.Pd/C-CatalyzedFukuyamaCouplingReactions

Ryield(%)CH3(CH2)6913-thienyl673-Cl-Ph

90EtO2C(CH2)6764-EtO2C-Ph70PhCO(CH2)2

74

ThePd/C-catalyzedFukuyamareactioncouldalsobeefficientlyusedinthesynthesisofthedehydrobiotinderiva-tive164(Scheme47).Pd/CturnedouttobeadvantageousoverhomogeneousPdcatalysts.196

Scheme47.SynthesisoftheDehydrobiotinDerivative164

5.2.2.Pd(OH)2onCarbon(Perlman’sCatalyst)AsalsofoundinSonogashiraandSuzukicouplings,Pd-(OH)2/Ccatalyst(Pearlman’scatalyst)wasfoundtobesuperiortoPd/CinFukuyamacouplingofthiolesterswiththeorganozincreagent159(Table64)affordingmuchhigheryields.197-199ThebetterperformanceofPd(OH)2/CwasexplainedbybetterleachingofPd(0)formedbyreductionbytheorganozinccompound.

5.3.Pd/C-CatalyzedNegishiReactionsRossiandco-workersreportedthePd/C-catalyzedcross-couplingofarylzincchlorideswith󰀁-haloacrylatesand

HeterogeneousPdCatalyzedC−CCouplingReactionsTable64.FukuyamaCouplingReactioninthePresenceofPd(OH)2/C

yielda(%)

PdcatalystR(mol%)T(h)Pd(OH)2/C

Pd/C4-MeOPh(CH2)20.15508430CH3(CH2)60.6249352cyclohexyl0.6727941EtO2C(CH2)60.9177867PhCO(CH2)20.9237050Ph

0.97172393-Cl-Ph0.62573253-thienyl

0.9

68

61

19

a

Isolatedyield.

cinnamates167.200AsPh3wassuperiortoPPh3asligand(Table65),andthe󰀁-halidewasattackedselectively.

Table65.Pd/C-CatalyzedNegishiReactions

a

Isolatedyield.Inentry1,PPh3wasused;inentries2-5,AsPh3wasused.

6.Ullmann-TypeCouplingReactionsTheUllmann-typereaction,thatis,homocouplingofarylorvinylhalidesisconventionallymediatedbycopperathightemperatures.Inrecentyears,Pd/C-catalyzedUllmann-typecouplinginthepresenceofreducingreagents,suchassodiumformate,hydrogen,zinc,indium,ortriethylaminehasat-tractedincreasingattention.

6.1.Pd/C-CatalyzedAryl−ArylCouplingAsfoundbyBamfieldandco-workers201in1978,biaryls169canbeobtainedinmodestyieldsfromchloro-orbromoarenesinthepresenceofPd/Candasurfactantinaqueousalkalinesodiumformateasareducingagent(Scheme48).

KineticsandmechanismofthereactionwasinvestigatedbySassonetal.suggestingasingleelectrontransfer(SET)processfromPd(0)tothechloroareneformingchloroareneradicalanions.202Workinginatwo-phasesystemunderphase-transfercatalysisconditionshelpedtoincreasetheyield(Scheme49).203ThePd/Ccatalystwasrecycledwithout

ChemicalReviews,2007,Vol.107,No.1161Scheme48.Pd/C-CatalyzedAryl-ArylCouplinginthePresenceofaSurfactantandHCO2Na

losingitscatalyticactivitysimplybyfiltrationandwashingwithmethanol.

Scheme49.Pd/C-CatalyzedHomocouplingofChlorobenzene

Excellentyieldsofbiaryls169wereachievedinanoil-in-watermicroemulsion.203,204Theseresultsdemonstratethatmanyindustriallyimportantsubstitutedbiarylsmaybeamenabletosynthesisinveryhighyieldsbysimplymodifyingthesolventassemblage(Table66).204

Table66.Ullmann-TypeCouplingofHaloarenesinMicroemulsionaselect.select.

microemulsiontconv(%)(%)entrywater/oilhaloarene

(h)

(%)Ar-ArAr-H1O/WPhCl3.51009282O/WPhBr3.51009463O/WPhI3.51009824O/W4-Me-Ph-Cl68389115O/W4-CHO-Ph-Cl5929286bO/WPhCl229253477W/OPhCl5.510031698

nonecPhCl4

100

54

46

a

Reactionconditions:haloaryl(0.013mol);5%Pd/C(1g);TBAB

(1g);sodiumformate(1.5g);NaOH(1.5g);75°C.bNoTBABwasused.cWaterwasusedassolvent.

HydrogenwasusedasreducingreagentinPd/C-catalyzedUllmann-typecouplingofvariouschlorobenzenesandbro-mobenzenetobiaryls169inthepresenceofaqueoussodiumhydroxideandasmallamountofPEG-400(Table67).205Arenes171formedbysimplereductionofthehalobenzeneswereobservedasbyproductstovariousextents.ThePd/Ccatalystcouldberecycledsimplybyfiltrationandwashingwithwaterandmethanol.Aftersevenruns,thecatalystretained>99%ofitsactivity.

ZinccouldalsobeusedasreducingreagentinPd/C-catalyzedaryl-arylcouplingofhaloarenesinaqueoussodiumhydroxideinthepresenceofPEG-400,206inaqueousacetonewithoutanadditionalbaseundermildconvenientconditions(air,RT),207orinwaterinthepresenceofcrownethers.208Althoughhighyieldswereachieved,onlyiodo-andbromoarenescouldbeusedinthelattermethod(Table68).207

Incontrast,Pd/C-catalyzedzinc-mediatedUllmann-typecouplingcouldbeimplementedwithavarietyofhalidesincludingchlorobenzeneswhenthereactionwascarriedoutundercarbondioxide(Table69).209,210

IndiumasreducingagentinPd/C-catalyzedaryl-arylcouplingofarylandpyridyliodidesprovidedhighyields.ShortreactiontimesweresufficientwithDMFassolventandLiClasadditive(Table70).211Aldehyde,keto,andthioethergroupsweretoleratedinthearyliodidecomponents.

162ChemicalReviews,2007,Vol.107,No.1Table67.Pd/C-CatalyzedAryl-ArylCouplinginthePresenceofHydrogen

a

YieldsbasedonGC.bIsolatedyieldsinparenthesis.

TriethylaminewasalsousedasreducingreagentinPd/C-catalyzedUllmann-typecoupling.ExcellentyieldswereachievedwithN,N-bis(4-fluorophenethyl)-5-iodoisophthal-amide(Scheme50).212Themethodologywasappliedtothecombinatorialsynthesisofbiaryllibraries.

6.2.HalidesPd/C-CatalyzedHomocouplingofVinylForPd/C-catalyzedhomocouplingsofvinylhalides,in-diumwasusedasreducingreagent.211Excellentregioselec-tivitiesandhighyieldsofthebivinylproducts178wereobtainedinDMFinthepresenceofLiCl(Table71).p-Bromo-R-bromostyreneselectivelyafforded2,3-di(p-bro-mophenyl)-1,3-butadienein88%yield(entry9)implyingthatavinylbromidemoietyismorereactivethanarylbromideinthiscouplingreaction.(E)-Bromostyrenepro-duced(E,E)-1,4-diphenyl-1,3-butadienein91%yieldac-cordingly(entry11).

6.3.ArylPd/C-CatalyzedandVinylHalidesIntramolecularCouplingofIndiumisalsousefulasareducingreagentinintra-molecularPd/C-catalyzedUllmann-typecouplingreactionsaffordingcarbocyclesandheterocycles.211Thetworeactivemoietiescanbearyl-aryl,aryl-vinyl,andvinyl-vinyl(Table72).

7.andHomocouplingAlkynesofArylboronicAcids,Pyridines,7.1.AcidsPd/C-Catalyzed(Suzuki-TypeHomocouplingHomocoupling)ofArylboronicIn1996,amechanisticstudyaboutPd-catalyzedSuzuki-typehomocouplingofarylboronicacidsrevealed213thatlowtomoderateyieldsofsymmetricalbiarylswereformedfromarylboronicacidswhenPd(PPh3)4orPd(OAc)2wasusedascatalyst.Anefficienthighyieldingapproachtothehomo-

YinandLiebscherTable68.Zn-MediatedUllmann-TypeCouplingofArylHalidesCatalyzedbyPd/C

a

DeterminedbyGC/MSanalysis.

couplingofarylboronicacidwasfoundlateronbyKozaandCaritabasedontheadditionofcoppernitratetoenhancethecouplingrate.214

In2005,Cravottoetal.reportedaheterogeneousPd/C-catalyzedSuzuki-typehomocouplingofarylboronicacid.High-intensityultrasound(US)ormicrowave(MW),aloneorcombined,promotedthisreaction.105,215Theseligand-freecouplingswerecarriedoutinaqueousmediaandaffordedthecorrespondingbiaryls185inacceptabletogoodyields(Table73).105

7.2.Pd/C-CatalyzedHomocouplingofPyridines4,4′-Dialkyl-2,2′-bipyridines187and2,2′:6′,2′′-terpy-ridines188arewidelyusedaschelatingagents.Transitionmetalcomplexesofthesecompoundsareveryimportantduetotheirchemicalreactivityandphotochemicalproper-ties.216,217

Thereareseveralmethodstopreparecompounds187and188,amongthem,aone-stepsynthesisviaPd/C-catalyzed

HeterogeneousPdCatalyzedC−CCouplingReactionsTable69.Pd/C-CatalyzedUllmann-TypeCouplingofArylHalidesinthePresenceofCO2210

entryAr-Xta(h)yieldb(%)1c2dPh-I273Ph-I154ePh-I15>41995Ph-I

86564-Me-Ph-I9572-Me-Ph-I1588784-MeO-Ph-I244-CF15971091-Naph-I3-Ph-I481009511Ph-Br

24124-MeO-Ph-Br152491134-Me489514f2,6-di-MeO-Ph-Br2N-Ph-Br7285152-OH-1-Naph-Br487816gPh-Cl368117gPh-Cl

365618g3,5-di-MeO-Ph-Cl489619g

1-Naph-Cl3-EtO36812C-Ph-Cl

96

9593

a

Reactionconditions:ArX(2mmol);5%w/wPd/C(300mg);Zn(170mg);H2O(5mL);CO2(1.0MPa).bIsolatedyields.cIntheabsenceofCO2.dCO2,1atm,bubbling.eCO2,6.0MPa.f2-Naphtholwasobtainedin17%yield.g5%Pd/C(400mg).

Table70.Ullmann-TypeCouplingReactionsofArylHalideswithPd/CandIn

biarylproduct174t(h)yielda(%)

(1-Naph)(4-22.5(4-MeO-Ph)n-Bu-Ph)22.587(3-MeO-Ph)22.585(4-HO-Ph)22.591(4-EtO22.586(3-EtO2C-Ph)2287(4-F2C-Ph)22.588(2-F3C-Ph)2286(4-CHO-Ph)3C-Ph)22.592(4-Ac-Ph)238587(4-Cl-Ph)22.5(2-thienyl)2288(2-Py)21.591(3-Py)21.5922

3

8689

a

Isolatedyield.

Scheme50.Pd/C-CatalyzedHomocouplingofArylIodide175inthePresenceofEt3N

dehydrogenativehomocouplingofpyridines.Thisisthesimplestandmostefficientmethod.Intheearly1960s,Pd/Cwasextensivelyappliedasacatalysttosynthesizebipyridinebyoxidativecouplingofpyridineintheabsenceofbaseoradditives.218-220In1971,aseriesof2,2′-bipyridines187and2,2′:6′,2′′-terpyridines188werepreparedbyrefluxingalkyl-pyridines186inthepresenceof5%Pd/Ccatalyst(Table74).221

ChemicalReviews,2007,Vol.107,No.1163Table71.SynthesisofButadienesbyPd/C-CatalyzedCouplingofVinylHalides

entryR1R2yielda(%)

12nPh-HexH9234Ph

H9354-MeO-PhH63-NHH8973-HO-Ph2-PhH8782-Cl-PhH794-FH721094-Br-Ph3C-PhH89114-PyH88H

H88Ph

8991

a

Isolatedyield.

Table72.IntramolecularVinylandArylCouplingReactionsa

a

Reactionperformedinthepresenceof2.5mol%ofPd/C,50mol%Inand1.5equivofLiClinDMF(0.5M)at100°C.bIsolatedyield.c

0.05MLiClinDMFwasused.

Table73.Pd/C-CatalyzedSuzuki-TypeHomocouplingofArylboronicAcids

a

Isolatedyield.

Inrecentyears,thePd/C-catalyzeddehydrogenativecouplingofpyridineswaswidelyappliedtothesynthesis

164ChemicalReviews,2007,Vol.107,No.1Table74.Pd/C-CatalyzedSynthesisof4,4′-Dialkyl-2,2′-bipyridines187and

4,4′4′′-Trialkyl-2,2′:6′,2′′-terpyridines188a

bipyridine187terpyridine188pyridine(R)yieldb(%)yieldb(%)Me10-15(15-25)1-2(1.5-3)Et17-25(20-25)3-5(2-3)i-Pr40-50(20-30)12-15(5-8)n-Pen

13-20(15-20)

3-5(2-3)

aReactionconditions:5%Pd/C(1g);4-alkylpyridine(25mL).b

Isolatedyieldsachievedbyundegassedcatalyst;inparenthesisyieldswithdegassedcatalyst

of4,4′-dimethyl-2,2′-bipyridines,222-2244,4′-di-(3-pentyl-2,2′-bipyridines),2254,4′-di-(5-nonyl-2,2′-bipyridines),2264,4′,5,5′-tetramethyl-2,2′-bipyridines,227anddiethyl2,2′-bipyridine-5,5-dicarboxylate.228When4-ethylpyridinewasrefluxedwith10%Pd/Cfor9days,4,4′,4′′-triethyl-2,2′:6′,2′′-terpyridine(Et3tPy)wasisolatedin20%yield.229Thesebipyridinesandterpyridineswerefurtherusedinpreparationoftransitionmetalcomplexesandotherfunctionalizedcompounds.

7.3.(Glaser-TypePd/C-CatalyzedCoupling)HomocouplingofAlkynesTheoxidativecouplingofterminalacetyleneshasbeenextensivelyinvestigatedandreviewed.230-232TheGlasercouplingreaction,i.e.,thecopper-mediatedoxidativehomocoupling,233-236istheclassicmethod.Thismethodisstillwidelyusedinmodernorganicsynthesis.237-239

However,therearesomereportsaboutthePd-catalyzedhomocouplingofalkynes(Glaser-typecoupling)underhomogeneouscatalyticconditionsusingI2,240chloro-acetone,241,242orethylbromoacetate243asoxidant.FairlambreportedthehomocouplingofalkynescatalyzedbyPd-(PPh3)2Cl2/CuIwithouttheadditionofanoxidant.244Het-erogeneousPd/C-catalyzedhomocouplingof(3-aminophenyl)-ethynewasfirstreportedbyus(Scheme51).WeattemptedtheSonogashiracouplingof3-iodo-5,7-diphenylpyrazolo-[1,5-a]pyrimidine190with(3-aminophenyl)ethyne189underPd/C-CuI-PPh3catalysis.NoSonogashiracouplingproductwasfound,butthehomocouplingproduct191wasisolatedinquantitativeyield.182,245Runningthereactionwithout190gavetheproduct191onlyin74%yield.245

Scheme51.Pd/C-CatalyzedHomocouplingof(3-Aminophenyl)ethyne189

Straussetal.demonstratedthatPdonporousglassinthepresenceofaircanbeusedforaGlaser-typecouplingofphenylethyne.24

YinandLiebscher8.OtherCouplingReactions8.1.CyanationofArylBromidesTheutilizationofhomogeneousPdcatalystsinthecyanationofarylhalideshasarousedconsiderableattentioninrecentyears.246Inordertomakethisreactionmoreattractivetoindustrialapplication,heterogeneousPd/C-catalyzedcyanationwasapproached.Hatsudaetal.reportedapracticalhigh-yieldingsynthesisofarylnitriles192byPd/C-catalyzedcyanationofarylbromidewithZn(CN)2inthepresenceofPPh3andZnBr2.247,248Functionalgroupssuchasacetyl,hydroxy,amino,andsulfidewereallcompatiblewiththereactionconditions(Table75).

Table75.Pd/C-CatalyzedCyanationofArylBromides

a

DeterminedbyHPLC;Pd/C(4mol%),PPh3(0.16equiv),Zndust(0.4equiv),Br2(0.2equiv),andZn(CN)2(0.6equiv)wereused.bPd/C(8mol%),PPh3(0.32equiv),Zndust(1.2equiv),Br2(0.4equiv),andZn(CN)2(0.5equiv)wereused.

8.2.CarbonylationsCarbonmonoxideisanotheroptiontointroduceaC-1unitintoasubstratebysolid-supportedPd-catalysis.Pd/CwasusedinthepresenceofPPh3/TsOH/LiCltosynthesize2-arylpropionicacids196bycarbonylationof1-aryl-1-chloroethanes193(Scheme52).249Thecatalystsystemwasalsoapplicabletothecarbonylationofvarious1-arylethanols194andtheircorrespondingolefins195(Scheme52),as

Scheme52.Pd/C-CatalyzedSynthesisof2-ArylpropionicAcids196

HeterogeneousPdCatalyzedC−CCouplingReactionsdemonstratedinTable76.Inallcases,highconversions,selectivities,andTOFwereachieved.

Table76.Synthesisof2-ArylpropionicAcids196byPd/C-CatalyzedCarbonylationssubstratet(h)conv(%)select.(%)TOF(h-1)193a4.29699.23375194a49299.13400195a49099.33300193b1390981010194b4.692982900193c

24

90

99

552

Esters197wereobtained,whenthePd/C-catalyzedcarbonylation62wascarriedoutinthepresenceofalcohols(Scheme53).

Scheme53.Pd/C-CatalyzedAlkoxycarbonylation

Asanalternative,estersandalsoanilidescouldbesynthesizedbyPd-catalyzedcarbonylationofaryliodidesoractivatedarylbromidesinthepresenceofbutanoloraniline,respectively,usingasilica-supportedbidentatearsinepalladiumcomplex“Si”-2As-Pd(II)underatmosphericconditions(Scheme54).250Thecatalystshowedhighactivityandcouldberecoveredandreused.

Scheme54.CarbonylationsbySilica-SupportedBidentateArsinePalladiumComplex

8.3.r-ArylationsofDiethylMalonateThehomogeneouspalladium-catalyzedarylationofcar-bonylcompoundsusingarylhalideshasbecomeausefulandgeneralsyntheticmethod.251-254Thereactioncouldalsobecatalyzedinheterogeneousfashionwithdiethylmalonateasthecarbonylcompound.255Forarylbromides200,Pd-exchangedNaYzeolites([(Pd(0)],[(Pd(II)],andentrapped[(Pd(NH3)4])exhibitedgoodactivityatlowPdconcentrations(2mol%)(Table77).Thecatalystscouldeasilybeseparatedandreusedwithoutareallossinactivity(entries1-4).

8.4.ArylationsofAromaticCompoundsPd-catalyzedarylationreactionsofarenesbyhaloarenestobiarylproductsweresuccessfullyappliedinintermolecularfashiontoavarietyofheterocyclicarenes256-258andarenespossessingadirectinggroup.259-261Inanintramolecularfashion,five-andsix-memberedringswereformed.262-265Inthesecouplings,hydrogenhalideiseliminated.Palladiumhydroxideoncarbon(Pearlman’scatalyst)effectivelycata-

ChemicalReviews,2007,Vol.107,No.1165Table77.Pd/Zeolite-Catalyzedr-ArylationsofDiethylMalonatea

GLCisolatedentrycatalystRyield(%)yield(%)12Pd(0)Pd(II)-Me3Me31(33)b21Me4141(38)b(39)b324Pd(OAc)-NaYNaYMe51(49)b295Pd(NH2-NaY3)4-NaYOMe5738456Pd(NHH47417Pd(NH3)4-NaY3)4-NaYF64508Pd(NHPd(NH3)4-NaY9

3)Ac7060)4-NaYPd(NH34-NaY

NO2

98

84

a

Reactionconditions:15mmolofarylbromide,10mmolofdiethylmalonate,20mmolofbase,2mol%Pd-catalyst,6mLsolvent,110°C,20h.bYieldofsecondruninparentheses.

lyzesarylationreactionsofaryliodidesandbromides,providingexcellentarylation-to-hydrodehalogenationratios(>30:1)withabroadscopeforbothintra-(Table78)andintermoleculararylationprocesses(Table79).29,266Thestudiesindicatedthatanactivehomogeneouspalladiumspeciesisproducedunderthereactionconditions.

Table78.ScopeofIntramolecularDirectArylationReactionsa

a

Conditions:substrate,KOAc(2equiv),andPd(OH)2/C(10mol%)addedtoascrewcapvialfollowedbyDMA(0.2M)andheatingto140°Cfor12-24h.bIsolatedyield.c20%ofhydrodebrominatedproductwasalsoobtained.

166ChemicalReviews,2007,Vol.107,No.1Table79.IntermolecularArylationsa

a

Conditions:substrate,KOAc(2equiv),andPd(OH)2/C(10mol%)addedtoascrewcapvialfollowedbyDMA(0.2M)andheatingto140°Cfor12-24h.bIsolatedyield.cIsolatedasa12:1mixtureofthe2,5/2,3isomers.dMesoporous[Pd]/SBA-15wasused;NMP,NaOAc,140°C,12d.29

8.5.AllylationsSeveralsolidsupportscanbeusedinPd-catalyzedallylicsubstitutions.Alreadyin1983,BergbreiterandChenreportedthefirstPd/C-catalyzedallylicsubstitutionofallylacetatebydiethylamineinthepresenceoftriphenylphosphine.267Thecatalystusedinthereactionwasreadilyrecyclableatleast10times.

Usingtriphenylphosphineastheligand,FelpinandLandaisreportedapracticalPd/C-mediatedallylicsubstitutioninwater(forsomeexamples,seeScheme55).268Allylacetates206,207,and208coupledwith2,2-dimethyl-[1,3]-dioxane-4,6-dione209affordingbiallyl-substitutedproducts210and211.Underthesameconditions,208coupledwithmalonicaciddiethylester200toprovidemonoallyl-substitutedproduct212.

Scheme55.Pd/C-CatalyzedAllylationsofMalonates

PalladiumonorinKF-Al2O3wasusedasaneffectivecatalystinligandlessandsolvent-freeallylicsubstitutions

YinandLiebscherundermicrowaveirradiation(Scheme56).108Thecatalystsystemwaspreparedbygrinding[Pd2(dba)3]togetherwithKF-Al2O3.Severalacidiccarbonylcompoundswereusedasnucleophile.Monoallylationproducts215and216ordiallylationproduct217couldbeachieved.Mixturesofregioisomericproducts218and219wereobservedwiththesubstitutedallylacetate206.

Scheme56.Pd/KF-Al2O3-CatalyzedAllylationsunderMWIrradiation

Allylationofmalonatecouldbeachievedinhighlyenantioselectivefashionandhighyieldwhen[Pd[η3C3H5)-Cl]2supportedbyreversephasesilicawasmodifiedbythechiralphosphine-oxazolineligandL(Scheme57).160

Scheme57.EnantioselectiveAllylationofMalonate

Allylationsofthelessacidicacetaldehydeoracetonewithallylicchloridescouldbeimplementedusingamodifiedsilica-supportedpalladiumcomplex“Si”-As-Pd(0),whereanarsineactsasligand.SinceSnCl2wasusedasanadditionalreducingagent,homoallylicalcoholswereob-tainedasproducts(Scheme58).269Thecatalystcouldberecoveredandreused.

Scheme58.CarbonylAllylationsunderReductiveConditionsCatalyzedby“Si”-As-Pd(0)

8.6.IntermolecularHeck-TypeCouplingLautensandco-workersreportedaPd/C-catalyzedligand-freeintermolecularHeck-typecouplingofaryliodideswith

HeterogeneousPdCatalyzedC−CCouplingReactionsallylacetates.UnlikeinagenuineHeckreactionwherehydrideiseliminatedaftertheoxidativeaddition,acetateservesasleavinggroupinthiscase(Table80).270Substratesbearingelectron-donatinggroupsrequiredlongerreactiontimes(entry5).However,substrateswithstronglyelectron-withdrawingsubstituentsledtorapidisomerizationofthealkenestothethermodynamicallymorestablestyrylsystem(entries6and8).Bothchloroandbromosubstituents(entries2and3)weretoleratedunderthereactionconditions.270

Table80.Heck-TypeCouplingofAllylAcetatewithVariousArylIodides

a

Isolatedyields.b5%Pd/Cwasused;18%ofinternalolefinwasobserved.

Apossiblemechanism(Scheme59)forthisreactioninvolvesinitialoxidativeadditiontoPd(0)followedbycarbopalladationoftheolefin.Subsequent󰀁-acetoxyelimi-nationgivesthefinalallylproduct.ReductionoftheresultingPd(II)toPd(0)ismostlikelyachievedbycoordinationofanaminebasefollowedby󰀁-hydridetransferandreductiveeliminationofhydrogeniodide.

9.PdonSolidSupportinTandemReactionsSolid-supportedPd-catalyzedcouplingreactionsbyC-C-bondformation,suchasSonogashiraorHeckreaction,can

ChemicalReviews,2007,Vol.107,No.1167Scheme59.ProposedMechanismfortheHeck-TypeCoupling

befollowedbyfurtheradditionreactions.Inthisway,heterocyclescanbeformedundercyclization.

9.1.SonogashiraCouplinginTandemReactionsWheno-aminoaryliodidesaresubmittedtoSonogashirareactions,intramolecularadditionoftheaminogrouptotheC-Ctriplebondcanleadtotheformationofindoles.Asonepossibility,Pd/C-CuIcouldbeusedascatalyst(Scheme60).271Theintermediatecompound225resultingfromtheSonogashiraC-Ccouplingreactionbetween2-iodoanilineandphenylacetylenewasneverobservedintheseexperi-ments.Thisindicatesthattheheteroannulationisrapidunderthereactionconditions.

Scheme60.Pd/C-CatalyzedSynthesisof2-Phenylindolea

a

Reactionconditions:5mmolof2-iodoaniline,5mmolofphenylacety-lene,15mmolofEt3N,1mol%Pd/C,1mol%CuI,15mLofDMF/H2O(1:1),120°C,6h.

Palandco-workersreportedageneralone-potsynthesisof2-alkyl/aryl-substitutedindoles228viaPd/C-mediatedcoupling/5-endo-digcyclizationofterminalalkyneswitho-iodo-N-mesylanilines227inwater.272ThereactionwascarriedoutusingPPh3andCuIascocatalystand2-amino-ethanolasabase(3equiv).Thereactionappearedtotolerateavarietyoffunctionalgroupspresentinthealkynesanddidnotrequiretheuseofanyorganiccosolvent(Table81).AgreatervarietyofN-substituentsatthe2-iodoanilineswaspossiblewhenPd-NaYwasusedascatalyst(Table82).273Cucatalysiswasnotnecessary.Itwasfoundthattheproductformationlargelydependedonthesolvent,base,andreactiontemperature.Therecycledcatalystshowedgoodreusabilityinthisheteroannulationreaction.

[Pd(NH3)4]2+/(NH4)Yascatalystsallowedimplementationofthesynthesisof2-phenylindolestartingfromo-iodoanilineandphenylacetyleneunderCu-freeconditionsin72%yield(Table83).191Similarly,microporous[Pd(NH3)4]2+/NaYormesoporous[Pd]/SBA-15silicacouldbeusedforthesynthesesofaseriesof2-substitutedindoles.29

Wheno-iodophenolsweresubmittedtoSonogashiracouplingwithalkynesthesubsequentintramolecularcy-clizationledtobenzo[b]furans.Becauseofitsrelevancetonaturalproductsandtopharmacymany2-substitutedbenzo-[b]furanderivativeswerepreparedinthiswayduringthelastyearsusingahomogeneouspalladiumcatalystandcopperiodideascocatalystundermildconditions.274-277Asaheterogeneousalternative,Pd/Cwasappliedinthepresence

168ChemicalReviews,2007,Vol.107,No.1Table81.Pd/C-CatalyzedSynthesisof2-SubstitutedN-Methylsulphonyl-5-methylindoles

a

Isolatedyields.

Table82.SynthesisofIndolesCatalyzedbyPd-NaYa

a

Reactionconditions:0.5mmolofarylhalide,1.0mmolofalkyne,5mol%Pd-cat.,0.5mmolofLiCl,1.0mmolofCs2CO3,10mLofDMF,at140°Cfor6h.bIsolatedyield.

ofCuI,PPh3,andprolinol.278

Thismethodtoleratedavarietyoffunctionalgroupsinthealkynes,aswellasabaselabilenitrogroupintheo-iodophenols(Table84).Theprotocoldoesnotrequiretheuseofphasetransfercatalystorwater-solublephosphineligandsandisfreefromtheuseofanyorganiccosolvent.

Pd(NH3)42+/(NH3)Yasazeolite-supportedversionallowedimplementationofacopper-freecouplingofo-iodophenolor2-iodo-4-nitrophenolwithphenylacetylene(Scheme61).191Isocoumarins235couldbesynthesizedbySonogashiratandemreactionswheno-iodobenzoicacids234were

YinandLiebscherTable83.Cu-FreeSynthesisofIndolesCatalyzedby

Microporous[Pd(NH3)4]2+/NaYorMesoporous[Pd]/SBA-15Silicaa

a

Reactionconditions:5mmolofarylhalide,7mmolofalkyne,1mol%Pdcatalyst,8mmolofNEt30.5mmolofLiCl,1.0mmolofCs2CO3,10mLofDMF,at140°Cfor6h.bGCyield;isolatedyieldinparenthesis.c75%GCyieldwithPd(OAc)2.Table84.Pd/C-CatalyzedSynthesisof2-SubstitutedBenzo[b]furans

a

Isolatedyield.

coupledwithterminalalkynes.Tenyearsafterthehomo-geneousversion,279Paletal.foundaPd/C-mediatedsynthesisofisocoumarinsin2005(Table85).280ThecatalystwasusedinthepresenceofEt3N,PPh3,andCuI.

9.2.HeckCouplinginTandemReactionsPd/C-catalyzedHeckcouplingreactionscouldbecom-binedwithhydrogenationusingthesamecatalyticsystem.

HeterogeneousPdCatalyzedC−CCouplingReactionsScheme61.Pd(NH3)42+/(NH3)Y-CatalyzedSynthesisof2-Phenylbenzo[b]furans

Table85.Pd/C-CatalyzedSynthesisof3-SubstitutedIsocoumarinsa

a

Allreactionswerecarriedoutusingiodide(1.0equiv),alkyne(2.0equiv),Et3N(5.0equiv),anda1/4/2ratioof10%Pd/C(3mol%),PPh3,andCuI,inEtOHfor16h.bIsolatedyields.

Inthisway,1,2-diphenylethanes236and237wereobtainedfromstyreneandbromobenzeneoro-bromonitrobenzene,respectively(Scheme62).271

Scheme62.One-PotSynthesisof1,2-Diphenylethanes236and237

Pd/C-catalyzedHeckcouplingwasfurthercombinedwithsubsequentSuzukicouplinginordertosynthesize4-styryl-biphenyl240,asubstructureofpharmaceuticallyactive

ChemicalReviews,2007,Vol.107,No.1169compounds.271BecauseHeckcouplingismoreselectivefordifferentleavinggroupsthanSuzukicoupling,theHeckcouplingwasappliedasthefirstreactionstepandSuzukicouplingasthesecond(Scheme63).

Scheme63.Pd/C-CatalyzedOne-PotSynthesisof4-Styrylbiphenyl240

10.ConclusionsandPerspectivesNowadays,Pd-catalyzedhomogeneouscouplingreactionsbelonginthetoolboxofeachsyntheticorganicchemistandhavebeenusedinmanyfieldsoforganicsynthesisleadingtoproductsofvariousinterests.However,industrialapplica-tionsofthesereactionsarestillchallengingbecausethecatalystsareexpensive,cannotberecycled,andaredifficulttoremovefromtheproduct.Thelatterfactisadrawbackinparticularforpharmaceuticalindustries.

AlthoughPdfixedoninorganicandorganicsupportshavebeenknownforalongtimeandappliedtoC-Ccouplingreactionsinsinglecasesmorethan30yearsago,theirversatilityhasonlyrecentlybeenshowninalmostalltypesofC-Ccouplingsduringthelastdecades.Thismethodologyhasnotbeenappreciatedbymanyorganicchemistssofar.Inmostcases,theirfirstchoiceishomogeneousPdcatalysts.Theheterogeneousmethodologyoffersanumberofadvantagessuchashighstabilityofthecatalyst,easyremovalofthecatalystfromthereactionmixturebyfiltration,reusabilityofthecatalystforseveraltimeswithoftenminimallossofactivity,and,remarkably,abetterperfor-mancethanhomogeneousPdcatalystsinaconsiderablenumberofcases.Ontheotherhand,catalysisbyPdonsolidsupportscanrequirehigherreactiontemperaturesandhavelimitationsinstereoselectivereactions.Pdcatalystssupportedbyinorganicandorganicmaterialscanalsoofferthepossibilityofcircumventingligandssuchasphosphinesorarsinesincertaincasesandoftendonotneedwater-andoxygen-freeconditions.

ThemajorityofcatalystsappliedsofararePd/Ccatalysts,whicharecommerciallyavailableinmostcasesandcandirectlybeused.OthersupportedPdcatalystshavetobepreparedbytheuser.TheycanprovideadvantagesoverPd/C,andtheycanallowtuningofthepropertiesofthecatalyst.Manyactivitiescanbeexpectedinthisfieldinfuture.Themechanismofmostofthecouplingreactionscatalyzedbysolid-supportedPdisstillunclear.Futureresearchinthisfieldwillhelptheunderstandingofthesometimescontradic-toryresultsinthisfield.IthasbeenincreasinglyacceptedthatmostheterogeneousPdcatalystscatalyzeinahomoge-neouswaybyleachedPdspecies,whichcanre-depositwhenthereactioncomestoanend.However,generalconclusionsaredifficulttoattainbecauseinmostcasesthemechanismofacertainreactionisaffectedbytheconditionsverymuch.AlthoughtherearealsoothermoderntrendsinPdcatalysis,suchaspolymer-supportedPd,Pdnanoparticles,orPdclusters,itcanbeexpectedthattheapplicationofPdsupportedbyinorganicmaterialswillgainincreasingim-portanceandapplicationinfuture.

170ChemicalReviews,2007,Vol.107,No.111.AbbreviationsAc

acetyl

Aliquat336methyltrioctylammoniumchloride

(A336)aq

aqueous

[bmim]PF61-butyl-3-methylimidazoliumhexafluorophosphateBnbenzyl

BOC

tert-butoxycarbonylBu(n-Bu)n-butylt-Butert-butylcat.catalyst

concnconcentrationconvconversion

CTABcetyltrimethylammoniumbromideDIPEA

diisopropylethylamineDMA(DMAc)N,N-dimethylacetamideDME1,2-dimethoxyethaneDMFN,N-dimethylformamide

Dppb1,4-bis(diphenylphosphino)butaneDppp1,3-bis(diphenylphosphino)propaneequivequivalentEtethyl

FSMonekindofmodifiedsilicaGCgaschromatography

GLCgas-liquidchromatographyHAPhydroxyapatiteHexhexyl

HPLChigh-pressureliquidchromatographyIPAisopropylalcohol

LDHlayereddoublehydroxideMCM-41onekindofmesoporoussilicaMemethylminminuteMWmicrowaveMOMmethoxymethyl

NAILnonaqueousionicliquidNaphnaphthyl

NHCnitrogen-containingheterocycliccarbineNMAcN-methylacetamideNMP

N-methylpyrrolidone

[OMIM]BF41-octanyl-3-methylimdiazoliumtetrafluoroboratePenpentylPhphenylPrpropylPypyridine

RTroomtemperatureselect.selectivity

SBAkindofstructuredmesoporoussilicattime

T

temperature

TBABtetrabutylammoniumbromideTEAtriethylamine

TEGtetra(ethyleneglycol)THFtetrahydrofuraneTstosyl

USultrasound

Ytypeoffaujasitewithspecificstructural,physical,andchemicalproperties

ZSM-5

typeofsyntheticzeolitewithspecificstructuralproperties

12.AcknowledgmentsWegratefullyacknowledgeimportantsuggestionsmadebythereferees.WearethankfultoDr.MichaelPa¨tzelforproof-readingthemanuscript.

13.References(1)Garrett,C.E.;Prasad,K.AdV.Synth.Catal.2004,346,889.

YinandLiebscher(2)Welch,C.J.;Albaneze-Walker,J.;Leonard,W.R.;Biba,M.;

DaSilva,J.;Henderson,D.;Laing,B.;Mathre,D.J.;Spencer,S.;Bu,X.;Wang,T.Org.ProcessRes.DeV.2005,9,198.(3)Zapf,A.;Beller,M.Top.Catal.2002,19,101.(4)deVries,J.G.Can.J.Chem.2001,79,1086.

(5)Baumeister,P.;Meyer,W.;Oertle,K.;Seifert,G.;Steiner,H.Chimia

1997,51,144.

(6)Eisenstadt,A.Chem.Ind.(Dekker)1998,75,415.

(7)Blaser,H.-U.;Indolese,A.;Schnyder,A.;Steiner,H.;Studer,M.J.

Mol.Catal.A:Chem.2001,173,3.

(8)Tucker,C.E.;DeVries,J.G.Top.Catal.2002,19,111.(9)Bhanage,B.M.;Arai,M.Catal.ReV.2001,43,315.

(10)Biffis,A.;Zecca,M.;Basato,M.J.Mol.Catal.A:Chem.2001,

173,249.

(11)(a)Seki,M.Synthesis2006,2975.(b)Zhao,F.;Bhanage,B.M.;

Shirai,M.;Arai,M.Chem.Eur.J.2000,6,843.

(12)Hagiwara,H.;Shimizu,Y.;Hoshi,T.;Suzuki,T.;Ando,M.;Ohkubo,

K.;Yokoyama,C.TetrahedronLett.2001,42,4349.

(13)Zhao,F.;Shirai,M.;Arai,M.J.Mol.Catal.A:Chem.2000,154,

39.

(14)Toebes,M.L.;vanDillen,J.A.;deJong,K.P.J.Mol.Catal.A:

Chem.2001,173,75.

(15)Mehnert,C.P.;Weaver,D.W.;Ying,J.Y.J.Am.Chem.Soc.1998,

120,12289.

(16)Djakovitch,L.;Koehler,K.J.Am.Chem.Soc.2001,123,5990.(17)Djakovitch,L.;Koehler,K.J.Mol.Catal.A:Chem.1999,142,275.(18)Djakovitch,L.;Heise,H.;Ko¨hler,K.J.Organomet.Chem.1999,

584,16.

(19)Biffis,A.;Zecca,M.;Basato,M.Eur.J.Inorg.Chem.2001,1131.(20)Wagner,M.;Ko¨hler,K.;Djakovitch,L.;Weinkauf,S.;Hagen,V.;

Muhler,M.Top.Catal.2000,13,319.(21)Ko¨hler,K.;Wagner,M.;Djakovitch,L.Catal.Today2001,66,105.(22)Ramchandani,R.K.;Uphade,B.S.;Vinod,M.P.;Wakharkar,R.

D.;Choudhary,V.R.;Sudalai,A.Chem.Commun.1997,2071.(23)Varma,R.S.;Naicker,K.P.;Liesen,P.J.TetrahedronLett.1999,

40,2075.

(24)Li,J.;Mau,A.W.H.;Strauss,C.R.Chem.Commun.1997,1275.(25)Solodenko,W.;Wen,H.;Leue,S.;Stuhlmann,F.;Sourkouni-Argirusi,G.;Jas,G.;Scho¨nfeld,H.;Kunz,U.;Kirschning,A.Eur.J.Org.Chem.2004,3601.

(26)Greenway,G.M.;Haswell,S.J.;Morgan,D.O.;Skelton,V.;Styring,

P.Sens.Actuators,B2000,63,153.

(27)Djakovitch,L.;Wagner,M.;Hartung,C.G.;Beller,M.;Koehler,

K.J.Mol.Catal.A:Chem.2004,219,121.

(28)Heidenreich,R.G.;Krauter,J.G.E.;Pietsch,J.;Ko¨hler,K.J.Mol.

Catal.A:Chem.2002,182-3,499.

(29)Djakovitch,L.;Dufaud,V.;Zaidi,R.AdV.Synth.Catal.2006,348,

715.

(30)Wall,V.M.;Eisenstadt,A.;Ager,D.J.;Laneman,S.A.Platinum

Met.ReV.1999,43,138.

(31)Ennis,D.S.;Mcmanus,J.;Wood-Kaczmar,W.;Richardson,J.;

Smith,G.E.;Carstais,A.Org.ProcessRes.DeV.1999,3,248.(32)Dawood,K.M.;Kirsching,A.Tetrahedron2005,61,12121.(33)Toy,P.H.;Shi,M.Tetrahedron2005,61,12025.(34)Farina,V.AdV.Synth.Catal.2004,346,1553.

(35)Davies,I.W.;Matty,L.;Hughes,D.L.;Reider,P.J.J.Am.Chem.

Soc.2001,123,10139.

(36)Phan,N.T.S.;Sluys,M.V.D.;Jones,C.W.AdV.Synth.Catal.

2006,348,609.

(37)Beller,M.;Fischer,H.;Ku¨hlein,K.;Reisinger,C.P.;Herrmann,

W.A.J.Organomet.Chem.1996,520,257.

(38)Zhao,F.;Murakami,K.;Shirai,M.;Arai,M.J.Catal.2000,194,

479.

(39)Reetz,M.T.;Lohmer,G.Chem.Commun.1996,1921.

(40)Kabalka,G.W.;Namboodiri,V.;Wang,L.Chem.Commun.2001,

775.

(41)Reetz,M.T.;deVries,J.G.Chem.Commun.2004,1559.

(42)Reetz,M.T.;Westermann,E.Angew.Chem.,Int.Ed.2000,39,165.(43)Bhattacharya,S.;Srivastava,A.;Sengupta,S.TetrahedronLett.2005,

46,3557.

(44)Astruc,D.;Lu,F.;Aranzaes,J.R.Angew.Chem.,Int.Ed.2005,44,

7852.

(45)Kogan,V.;Aizenshtat,Z.;Popovitz-Biro,R.;Neumann,R.Org.Lett.

2002,4,3529.

(46)Uozumi,Y.Top.Curr.Chem.2004,242,77.

(47)Shimizu,K.-i.;Koizumi,S.;Hatamachi,T.;Yoshida,H.;Komai,

S.;Kodama,T.;Kitayama,Y.J.Catal.2004,228,141.

(48)Yu,K.;Sommer,W.;Richardson,J.M.;Weck,M.;Jones,C.W.

AdV.Synth.Catal.2005,347,161.

(49)Corma,A.;Garcia,H.;Leyva,A.;Primo,A.Appl.Catal.A:Gen.

2003,247,41.(50)Ko¨hler,K.;Heidenreich,R.G.;Krauter,J.G.E.;Pietsch,J.Chem.s

Eur.J.2002,8,622.

HeterogeneousPdCatalyzedC−CCouplingReactions(51)Augustine,R.L.;O’Leary,S.T.J.Mol.Catal.A:Chem.1995,95,

277andreferencestherein.

(52)Wali,A.;Pillai,S.M.;Satish,S.React.Kinet.Catal.Lett.1997,60,

189.

(53)Wali,A.;Pillai,S.M.;Kaushik,V.K.;Satish,S.Appl.Catal.A:

Gen.1996,135,83.

(54)Shmidt,A.F.;Mametova,L.V.;Tumas’ev,R.V.Kinet.Catal.1996,

37,406.

(55)Cwik,A.;Hell,Z.;Figueras,F.AdV.Synth.Catal.2006,348,523.(56)Choudary,B.M.;Madhi,S.;Kantam,M.L.;Sreedhar,B.;Iwasawa,

Y.J.Am.Chem.Soc.2004,126,6833.

(57)Corma,A.;Garcia,H.;Leyva,A.;Primo,A.Appl.Catal.A:Gen.

2004,257,77.

(58)Rollet,P.;Kleist,W.;Dufaud,V.;Djakovitch,L.J.Mol.Catal.A:

Chem.2005,241,39.

(59)Tagata,T.;Nishida,M.J.Org.Chem.2003,68,9412.

(60)Julia,M.;Duteil,M.;Grard,C.;Kuntz,E.Bull.Soc.Chim.Fr.1973,

2791.

(61)Dams,M.;Drijkoningen,L.;DeVos,D.;Jacobs,P.Chem.Commun.

2002,1062.

(62)Eisenstadt,A.EuropeanPatentEP0461322,1990.

(63)Mori,K.;Mizoroki,T.;Ozaki,A.Bull.Chem.Soc.Jpn.1973,46,

1505.

(64)Mizoroki,T.;Mori,K.;Ozaki,A.Bull.Chem.Soc.Jpn.1971,44,

581.

(65)Albers,P.;Burmeister,R.;Seibold,K.;Prescher,G.;Parker,S.F.;

Ross,D.K.J.Catal.1999,181,145.

(66)Choudary,B.M.;Madhi,S.;Chowdari,N.S.;Kantam,M.L.;

Sreedhar,B.J.Am.Chem.Soc.2002,124,14127.

(67)Okubo,K.;Shirai,M.;Yokoyama,C.TetrahedronLett.2002,43,

7115.

(68)Xie,X.;Lu,J.;Chen,B.;Han,J.;She,X.;Pan,X.TetrahedronLett.

2004,45,809.

(69)Forsyth,S.A.;Gunaratne,H.Q.N.;Hardacre,C.;McKeown,A.;

Rooney,D.W.;Seddon,K.R.J.Mol.Catal.A:Chem.2005,231,61.(70)Pola´cˇkova´,V.;Hut’ka,M.;Toma,Sˇ.Ultrason.Sonochem.2005,12,

99.

(71)Li,J.J.;Gribble,G.W.PalladiuminHeterocyclicChemistry;

Pergamon:Amsterdam,2000.

(72)Amatore,C.;Jutand,A.Acc.Chem.Res.2000,33,314.(73)Herrmann,W.A.;Brossmer,C.;O¨fele,K.;Reisinger,C.P.;

Priermeier,T.;Beller,M.;Fischer,H.Angew.Chem.,Int.Ed.1995,34,1844.

(74)deVries,J.G.J.Chem.Soc.,DaltonTrans.2006,421.

(75)Louie,J.;Hartwig,J.F.Angew.Chem.,Int.Ed.1996,35,2359.(76)LeBlond,C.R.;Andrews,A.T.;Sun,Y.K.;Sowa,J.R.Org.Lett.

2001,3,1555.

(77)LeBars,J.;Specht,U.;Bradley,J.S.;Blackmond,D.G.Langmuir

1999,15,7621.

(78)Shmidt,A.F.;Smirnov,V.V.;Starikova,O.V.;Elaev,A.V.Kinet.

Catal.2001,42,199.(79)Nova´k,Z.;Szabo´,A.;Re´pa´si,J.;Kotschy,A.J.Org.Chem.2003,

68,3327.

(80)Widegren,J.A.;Finke,R.G.J.Mol.Catal.A:Chem.2003,198,

317.

(81)Heidenreich,R.G.;Ko¨hler,K.;Krauter,J.G.E.;Pietsch,J.Synlett

2002,1118.

(82)Zhao,F.Y.;Arai,M.React.Kinet.Catal.Lett.2004,81,281.(83)Zhao,F.Y.;Shirai,M.;Ikushima,Y.;Arai,M.J.Mol.Catal.A:

Chem.2002,180,211.

(84)Okumura,K.;Nota,K.;Yoshida,K.;Niwa,M.J.Catal.2005,231,

245.(85)Pro¨ckl,S.S.;Kleist,W.;Ko¨hler,K.Tetrahedron2005,61,9855.(86)Srivastava,R.;Venkatathri,N.;Srinivas,D.;Ratnasamy,P.Tetra-hedronLett.2003,44,3649.

(87)Conlon,D.A.;Pipik,B.;Ferdinand,S.;LeBlond,C.R.;Sowa,J.

R.;Izzo,B.AdV.Synth.Catal.2003,345,931.

(88)Sakurai,H.;Tsukuda,T.;Hirao,T.J.Org.Chem.2002,67,2721.(89)Miyaura,N.;Suzuki,A.Chem.ReV.1995,95,2457.(90)Suzuki,A.J.Organomet.Chem.1999,576,147.

(91)Littke,A.F.;Fu,G.C.Angew.Chem.,Int.Ed.2002,41,4176.(92)Marck,G.;Villiger,A.;Buchecker,R.TetrahedronLett.1994,35,

3277.

(93)Lipshutz,B.H.;Frieman,B.;Birkedal,H.Org.Lett.2004,6,2305.(94)Sajiki,H.;Kurita,T.;Kozaki,A.;Zhang,G.;Kitamura,Y.;Maegawa,

T.;Hirota,K.Synthesis2005,537-542.Seealso:Sajiki,H.;Kurita,T.;Kozaki,A.;Zhang,G.;Kitamura,Y.;Maegawa,T.;Hirota,K.Synthesis2005,852.

(95)Gala,D.;Stamford,A.;Jenkins,J.;Kugelman,M.Org.ProcessRes.

DeV.1997,1,163.

(96)Walsh,C.J.;Mandal,B.K.Chem.Mater.2001,13,2472.

ChemicalReviews,2007,Vol.107,No.1171(97)Dyer,U.C.;Shapland,P.D.;Tiffin,P.D.TetrahedronLett.2001,

42,1765.

(98)Lu,G.;Franze´n,R.;Zhang,Q.;Xu,Y.J.TetrahedronLett.2005,

46,4255.

(99)Organ,M.G.;Mayer,S.J.Comb.Chem.2003,5,118.

(100)McClure,M.S.;Roschangar,F.;Hodson,S.J.;Millar,A.;Osterhout,

M.H.Synthesis2001,1681.

(101)Felpin,F.X.J.Org.Chem.2005,70,8575.

(102)Arcadi,A.;Cerichelli,G.;Chiarini,M.;Correa,M.;Zorzan,D.Eur.

J.Org.Chem.2003,4080.(103)Lyse´n,M.;Ko¨hler,K.Synlett2005,1671.

(104)Arvela,R.K.;Leadbeater,N.E.Org.Lett.2005,7,2101.

(105)Cravotto,G.;Beggiato,M.;Penoni,A.;Palmisano,G.;Tollari,S.;

Le´veˆque,J.M.;Bonrath,W.TetrahedronLett.2005,46,2267.(106)Kabalka,G.W.;Pagni,R.M.;Hair,C.M.Org.Lett.1999,1,1423.(107)Kabalka,G.W.;Wang,L.;Pagni,R.M.;Hair,C.M.;Namboodiri,

V.Synthesis2003,217.

(108)Villemin,D.;Caillot,F.TetrahedronLett.2001,42,639.

(109)Stevens,P.D.;Fan,J.D.;Gardimalla,H.M.R.;Yen,M.;Gao,Y.

Org.Lett.2005,7,2085-2088.

(110)Stevens,P.D.;Li,G.;Fan,J.;Yen,M.;Gao,Y.Chem.Commun.

2005,4435.

(111)Nishihata,Y.;Mizuki,J.;Akao,T.;Tanaka,H.;Uenishi,M.;Kimura,

M.;Okamoto,T.;Hamada,N.Nature2002,418,164.

(112)Andrews,S.P.;Stepan,A.F.;Tanada,H.;Ley,S.V.;Smith,M.D.

AdV.Synth.Catal.2005,347,647.

(113)Smith,M.D.;Stepan,A.F.;Ramarao,C.;Brennan,P.E.;Ley,S.

V.Chem.Commun.2003,2652.

(114)Cwik,A.;Hell,Z.;Figueras,F.Org.Biomol.Chem.2005,3,4307.(115)Corma,A.;Garcı´a,H.;Leyva,A.Appl.Catal.A:Gen.2002,236,

179.

(116)Bulut,H.;Artok,L.;Yilmaz,S.TetrahedronLett.2003,44,289.(117)Artok,L.;Bulut,H.TetrahedronLett.2004,45,3881.(118)Kosslick,H.;Mo¨nnich,I.;Paetzold,E.;Fuhrmann,H.;Fricke,R.;

Mu¨ller,D.;Oehme,G.MicroporousMesoporousMater.2001,44-45,537.

(119)Paetzold,E.;Oehme,G.;Fuhrmann,H.;Richter,M.;Eckelt,R.;Pohl,

M.M.;Kosslick,H.MicroporousMesoporousMater.2001,44-45,517.

(120)Kim,N.;Kwon,M.S.;Park,C.M.;Park,J.TetrahedronLett.2004,

45,7057.

(121)Crudden,C.M.;Sateesh,M.;Lews,R.J.Am.Chem.Soc.2005,

127,10045.

(122)Bedford,R.B.;Singh,U.G.;Walton,R.I.;Williams,R.T.;Davis,

S.A.Chem.Mater.2005,17,701.(123)Gu¨rbu¨z,N.;O¨zdemir,I.;Sec¸kin,T.;C¸etinkaya,B.J.Inorg.

Organomet.Polym.2004,14,149.(124)Baleiza˜o,C.;Corma,A.;Garcı´a,H.;Leyva,A.Chem.Commun.2003,

606.

(125)Mubofu,E.B.;Clark,J.H.;Macquarrie,D.J.GreenChem.2001,

3,23.

(126)Paul,S.;Clark,J.H.GreenChem.2003,5,635.

(127)Bedford,R.B.;Cazin,C.S.J.;Hursthouse,M.B.;Light,M.E.;

Pike,K.J.;Wimperis,S.J.Organomet.Chem.2001,633,173.(128)Shimizu,K.-i.;Kan-no,T.;Kodama,T.;Hagiwara,H.;Kitayama,

Y.TetrahedronLett.2002,43,5653.

(129)Shimizu,K.-i.;Maruyama,R.;Komai,S.-i.;Kodama,T.;Kitayama,

Y.J.Catal.2004,227,202.

(130)Varma,R.S.;Naicker,K.P.TetrahedronLett.1999,40,439.(131)Mori,K.;Yamaguchi,K.;Hara,T.;Mizugaki,T.;Ebitani,K.;Kaneda,

K.J.Am.Chem.Soc.2002,124,11572.

(132)Julia,M.;Duteil,M.Bull.Soc.Chim.Fr.1973,2790.

(133)Hallberg,A.;Westfelt,L.J.Chem.Soc.,PerkinTrans,11984,933.(134)Andersson,C.M.;Hallberg,A.;Daves,G.D.J.Org.Chem.1987,

52,3529.

(135)Andersson,C.M.;Hallberg,A.J.Org.Chem.1988,53,235.(136)Augustine,R.L.;O’Leary,S.T.J.Mol.Catal.1992,72,229.(137)Sakamoto,T.;Arakida,H.;Edo,K.;Yamanaka,H.Heterocycles

1981,16,965.

(138)Ambulgekar,G.V.;Bhanage,B.M.;Samant,S.D.TetrahedronLett.

2005,46,2483.(139)Beller,M.;Ku¨hlein,K.Synlett1995,441.(140)Welton,T.Chem.ReV.1999,99,2071.

(141)Wasserscheid,P.;Keim,W.Angew.Chem.,Int.Ed.2000,39,3772.(142)Perosa,A.;Tundo,P.;Selva,M.;Zinovyev,S.;Testa,A.Org.Biomol.

Chem.2004,2,2249.

(143)Savoia,D.;Trombini,C.;Ronchi,A.U.;Verardo,G.J.Chem.Soc.,

Comm.Commun.1981,541.

(144)Kaneda,K.;Higuchi,M.;Imanaka,T.J.Mol.Catal.1990,63,L33.(145)Mehnert,C.P.;Ying,J.Y.Chem.Commun.1997,2215.(146)Papp,A.;Galba´cs,G.;Molna´r,AÄ.TetrahedronLett.2005,46,7725.(147)Li,L.;Yan,J.-n.;Shi,J.-l.Chem.Commun.2004,1990.

172ChemicalReviews,2007,Vol.107,No.1(148)Pro¨ckl,S.S.;Kleist,W.;Gruber,M.A.;Ko¨hler,K.Angew.Chem.,

Int.Ed.2004,43,1881.

(149)Hamza,K.;Abu-Reziq,R.;Avnir,D.;Blum,J.Org.Lett.2004,6,

925.

(150)Dams,M.;Drijkoningen,L.;Pauwels,B.;Van-Tendeloo,G.;De-Vos,D.E.;Jacobs,P.A.J.Catal.2002,209,225.(151)Molna´r,AÄ.;Papp,A.;Miklo´s,K.;Forgo,P.Chem.Commun.2003,

2626.

(152)Papp,A.;Miklo´s,K.;Forgo,P.;Molna´r,AÄ.J.Mol.Catal.A:Chem.

2005,229,107.

(153)Cai,M.Z.;Song,C.S.;Huang,X.Synthesis1997,521.

(154)Cai,M.;Huang,Y.;Zhao,H.;Song,C.React.Funct.Polym.2004,

59,81.

(155)Cai,M.-Z.;Zhao,H.;Hu,W.-Y.Chin.J.Chem.2005,23,443.(156)Cai,M.;Liu,G.;Zhou,J.J.Mol.Catal.A:Chem.2005,227,107.(157)Mandal,S.;Roy,D.;Chaudhari,R.V.;Sastry,M.Chem.Mater.

2004,16,3714.

(158)Clark,J.H.;Macquarrie,D.J.;Mubofu,E.B.GreenChem.2000,

2,53.

(159)Horniakova,J.;Raja,T.;Kubota,Y.;Sugi,Y.J.Mol.Catal.A:

Chem.2004,217,73.

(160)Anson,M.S.;Mirza,A.R.;Tonks,L.;Williams,J.M.J.Tetrahedron

Lett.1999,40,7147.

(161)Li,L.;Zhang,L.-X.;Shi,J.-L.;Yan,J.-N.;Liang,J.Appl.Catal.A:

Gen.2005,283,85.

(162)Choudary,B.M.;Sarma,M.R.;Rao,K.K.TetrahedronLett.1990,

31,5781.

(163)Choudary,B.M.;Sarma,R.M.;Rao,K.K.Tetrahedron1992,48,

719.

(164)Ohff,M.;Ohff,A.;van-der-Boom,M.E.;Milstein,D.J.Am.Chem.

Soc.1997,119,11687.

(165)Shaw,B.L.;Perera,S.D.;Staley,E.A.Chem.Commun.1998,1361.(166)Brunner,H.;de-Courcy,N.C.;Geneˆt,J.P.TetrahedronLett.1999,

40,4815.

(167)Takamiya,I.;Tsukamoto,S.;Shimoda,M.;Miyashita,N.;Arisawa,

M.;Arakawa,Y.;Nishida,A.Chem.Lett.2004,33,1208.

(168)Jikei,M.;Ishida,Y.;Seo,Y.;Kakimoto,M.-A.;Imai,Y.Macro-molecules1995,28,7924.

(169)Corma,A.;Garcia,H.;Leyva,A.J.Mol.Catal.A:Chem.2005,

230,97.

(170)Bennur,T.H.;Ramani,A.;Bal,R.;Chanda,B.M.;Sivasanker,S.

Catal,Commun.2002,3,493.

(171)De-la-Rosa,M.A.;Velarde,E.;Guzma´n,A.Synth.Commun.1990,

20,2059.

(172)Potts,K.T.;Horwitz,C.P.;Fessak,A.;Keshavarz-K,M.;Nash,K.

E.;Toscano,P.J.J.Am.Chem.Soc.1993,115,10444.(173)Samaritani,S.;Menicagli,R.Tetrahedron2002,58,1381.

(174)Fairlamb,I.J.S.;Lu,F.J.;Schmidt,J.P.Synthesis2003,2564.(175)Garg,N.K.;Woodroofe,C.C.;Lacenere,C.J.;Quake,S.R.;Stoltz,

B.M.Chem.Commun.2005,4551.

(176)Pal,M.;Batchu,V.R.;Swamy,N.K.;Padakanti,S.Tetrahedron

Lett.2006,47,3923.

(177)Bleicher,L.;Cosford,N.D.P.Synlett1995,1115.

(178)Bleicher,L.S.;Cosford,N.D.P.;Herbaut,A.;McCallum,J.S.;

Mcdonald,I.A.J.Org.Chem.1998,63,1109.

(179)Cosford,N.D.P.;Bleicher,L.;Herbaut,A.;McCallum,J.S.;Vernier,

J.-M.;Dawson,H.;Whitten,J.P.;Adams,P.;Chavez-Noriega,L.;Correa,L.D.;Crona,J.H.;Mahaffy,L.S.;Menzaghi,F.;Rao,T.S.;Reid,R.;Sacaan,A.I.;Santori,E.;Stauderman,K.A.;Whelan,K.;Lloyd,C.K.;McDonald,I.A.J.Med.Chem.1996,39,3235.(180)Felpin,F.X.;Vo-Thanh,G.;Villie´ras,J.;Lebreton,J.Tetrahedron:

Asymmetry2001,12,1121.(181)Lo´pez-Deber,M.P.;Castedo,L.;Granja,J.R.Org.Lett.2001,3,

2823.

(182)Yin,L.;Liebscher,J.Synthesis2005,131.

(183)Yin,L.;Erdmann,F.;Liebscher,J.J.Heterocycl.Chem.2005,42,

1369.

(184)Marrison,L.R.;Dickinson,J.M.;Ahmed,R.;Fairlamb,I.J.

TetrahedronLett.2002,43,8853.

(185)Pal,M.;Parasuraman,K.;Gupta,S.;Yeleswarapu,K.R.Synlett2002,

1976.

(186)Batchu,V.R.;Subramanian,V.;Parasuraman,K.;Swamy,N.K.;

Kumar,S.;Pal,M.Tetrahedron2005,61,9869.

(187)Bates,R.W.;Boonsombat,J.J.Chem.Soc.,PerkinTrans.2001,1,

654.

(188)Thathagar,M.B.;Rothenberg,G.Org.Biomol.Chem.2006,4,111.(189)Sajiki,H.;Zhang,G.;Kitamura,Y.;Maegawa,T.;Hirota,K.Synlett

2005,619;Synlett2005,1046.

(190)Djakovitch,L.;Rollet,P.TetrahedronLett.2004,45,1367-1370.(191)Djakovitch,L.;Rollet,P.AdV.Synth.Catal.2004,346,1782.(192)Tyrrell,E.;Al-Saardi,A.;Millet,J.Synlett2005,487.(193)Roth,G.P.;Farina,V.;Liebeskind,L.S.;Pen˜a-Cabrera,E.

TetrahedronLett.1995,36,2191.

YinandLiebscher(194)Liebeskind,L.S.;Pen˜a-Cabrera,E.Org.Synth.1999,77,135.(195)Kang,S.K.;Lee,H.W.;Jang,S.B.;Kim,T.H.;Kim,J.S.Synth.

Commun.1996,26,4311.

(196)Shimizu,T.;Seki,M.TetrahedronLett.2001,42,429.(197)Mori,Y.;Seki,M.Heterocycles2002,58,125.

(198)Kimura,M.;Seki,M.TetrahedronLett.2004,45,1635.(199)Mori,Y.;Seki,Y.J.Org.Chem.2003,68,1571.

(200)Rossi,R.;Bellina,F.;Carpita,A.;Gori,R.Synlett1995,344.(201)Bamfield,P.;Quan,P.M.Synthesis1978,537.

(202)Mukhopadhyay,S.;Rothenberg,G.;Gitis,D.;Wiener,H.;Sasson,

Y.J.Chem.Soc.,PerkinTrans.1999,2481.

(203)Mukhopadhyay,S.;Ratner,S.;Spernat,A.;Qafisheh,N.;Sasson,

Y.Org.ProcessRes.DeV.2002,6,297.

(204)Mukhopadhyay,S.;Yaghmur,A.;Kundu,B.;Baidossi,M.;Sasson,

Y.Org.ProcessRes.DeV.2003,7,641.

(205)Mukhopadhyay,S.;Rothenberg,G.;Wiener,H.;Sasson,Y.Tetra-hedron1999,55,14763.

(206)Mukhopadhyay,S.;Rothenberg,G.;Gitis,D.;Sasson,Y.Org.Lett.

2000,2,211.

(207)Venkatraman,S.;Li,C.J.Org.Lett.1999,1,1133.

(208)Venkatraman,S.;Li,C.J.TetrahedronLett.2000,41,4831.(209)Li,J.;Xie,Y.;Jiang,H.;Chen,M.GreenChem.2002,4,424.(210)Li,J.-H.;Xie,Y.-X.;Yin,D.-L.J.Org.Chem.2003,68,9867.(211)Lee,P.H.;Seomoon,D.;Lee,K.Org.Lett.2005,7,343.

(212)Boger,D.L.;Goldberg,J.;Andersson,C.M.J.Org.Chem.1999,

64,2422.(213)Moreno-Man˜as,M.;Pe´rez,M.;Pleixats,R.J.Org.Chem.1996,61,

2346.

(214)Koza,D.J.;Carita,E.Synthesis2002,2183.

(215)Cravotto,G.;Palmisano,G.;Tollari,S.;Nano,G.M.;Penoni,A.

Ultrason.Sonochem.2005,12,91.

(216)Balzani,V.;Juris,A.;Venturi,M.;Campagna,S.;Serroni,S.Chem.

ReV.1996,96,759.

(217)Hagelin,H.;Hedman,B.;Orabona,I.;A°kermark,T.;A°kermark,B.;

Klug,C.A.J.Mol.Catal.A:Chem.2000,164,137.

(218)Rapoport,H.;Iwamoto,R.;Tretter,J.R.J.Org.Chem.1960,25,

372.

(219)Broadbent,H.S.;Anderson,R.C.J.Org.Chem.1962,27,2679.(220)Jackson,G.D.F.;Sasse,W.H.F.;Whittle,C.P.Aust.J.Chem.

1963,16,1126.

(221)Rosevear,P.E.;Sasse,W.H.F.J.Heterocycl.Chem.1971,483.(222)Polin,J.;Schmohel,E.;Balzani,V.Synthesis1998,321.

(223)Adcock,P.A.;Keene,F.R.;Smythe,R.S.;Snow,M.R.Inorg.

Chem.1984,23,2336.

(224)Sprintschnik,G.;Sprintschnik,H.W.;Kirsch,P.P.;Whitten,D.G.

J.Am.Chem.Soc.1977,99,4947.

(225)Sapp,S.A.;Elliott,C.M.;Contado,C.;Caramori,S.;Bignozzi,C.

A.J.Am.Chem.Soc.2002,124,11215.

(226)Matyjaszewski,K.;Patten,T.E.;Xia,J.J.Am.Chem.Soc.1997,

119,674.

(227)Mines,G.A.;Bjerrum,M.J.;Hill,M.G.;Casimiro,D.R.;Chang,

I.-J.;Winkler,J.R.;Gray,H.B.J.Am.Chem.Soc.1996,118,1961.(228)Newkome,G.R.;Gross,J.;Patri,A.K.J.Org.Chem.1997,62,

3013.

(229)Nazeeruddin,M.K.;Pe´chy,P.;Renouard,T.;Zakeeruddin,S.M.;

Humphry-Baker,R.;Comte,P.;Liska,P.;Cevey,L.;Costa,E.;Shklover,V.;Spiccia,L.;Deacon,G.B.;Bignozzi,C.A.;Gra¨tzel,M.J.Am.Chem.Soc.2001,123,1613.

(230)Eglinton,G.;McCrae,W.AdV.Org.Chem1963,4,225.

(231)Brandsma,L.PreparatiVeAcelenicChemistry;Elsevier:Amsterdam

1988;Chapter10,pp219-227.

(232)Siemsen,P.;Livingston,R.C.;Diederich,F.Angew.Chem.,Int.Ed.

2000,39,2632.

(233)Baeyer,A.Ber.Dtsch.Chem.Ges.1882,15,50.(234)Glaser,C.Ber.Dtsch.Chem.Ges.1869,2,422.(235)Glaser,C.Ann.Chem.Pharm.1870,154,137.(236)Baeyer,A.Ber.Dtsch.Chem.Ges.1885,18,674.(237)Li,J.;Jiang,H.Chem.Commun.1999,2369.

(238)Pak,J.J.;Weakly,T.J.R.;Haley,M.M.J.Am.Chem.Soc.1999,

121,8182.

(239)Koradin,C.;Dohle,W.;Rodriguez,A.L.;Schmid,B.;Knochel,P.

Tetrahedron2003,59,1571.

(240)Liu,Q.;Burton,D.J.TetrahedronLett.1997,38,4371.

(241)Cho,D.H.;Lee,J.H.;Kim,B.H.J.Org.Chem.1999,64,8048.(242)Rossi,R.;Carpita,A.;Bigelli,C.TetrahedronLett.1985,26,523.(243)Lei,A.;Srivastava,M.;Zhang,X.J.Org.Chem.2002,67,1969.(244)Fairlamb,I.J.S.;Ba¨uerlein,P.S.;Marrison,L.R.;Dickinson,J.M.

Chem.Commun.2003,632.

(245)Yin,L.X.Ph.D.Thesis,HumboldtUniversity,Berlin,2005.

(246)Sundermeier,M.;Zapf,A.;Beller,M.Eur.J.Inorg.Chem.2003,

3513.

(247)Hatsuda,M.;Seki,M.TetrahedronLett.2005,46,1849.(248)Hatsuda,M.;Seki,M.Tetrahedron2005,61,9908.

HeterogeneousPdCatalyzedC−CCouplingReactions(249)Jayasree,S.;Seayad,A.;Chaudhari,R.V.Chem.Commun.1999,

1067.

(250)Cai,M.;Huang,Y.;Hu,R.;Song,C.J.Mol.Catal.A:Chem.2004,

212,151.

(251)Palucki,M.;Buchwald,S.L.J.Am.Chem.Soc.1997,119,11108.(252)Hamman,B.C.;Hartwig,J.F.J.Am.Chem.Soc.1997,119,12382.(253)Culkin,D.A.;Hartwig,J.F.Acc.Chem.Res.2003,36,234.

(254)Satoh,T.;Miura,M.;Nomura,M.J.Organomet.Chem.2002,653,

161.

(255)Djakovitch,L.;Ko¨hler,K.J.Organomet.Chem.2000,606,101.(256)Okazawa,T.;Satoh,T.;Miura,M.;Nomura,M.J.Am.Chem.Soc.

2002,124,5286.

(257)Sezen,B.;Sames,D.J.Am.Chem.Soc.2003,125,5274.

(258)Hassan,J.;Gozzi,C.;Schulz,E.;Lemaire,M.J.Organomet.Chem.

2003,687,280.

(259)Satoh,T.;Kawamura,Y.;Miura,M.;Nomura,M.Angew.Chem.,

Int.Ed.1997,36,1740.

(260)Kawamura,Y.;Satoh,T.;Miura,M.;Nomura,M.Chem.Lett.1999,

28,961.

(261)Daugulis,O.;Zaitsev,V.G.Angew.Chem.,Int.Ed.2005,44,4046.(262)Wiegander,S.;Scha¨ferin,H.J.Tetrahedron1995,51,5341.

(263)Hennings,D.D.;Iwasa,S.;Rawal,V.H.J.Org.Chem.1997,62,

2.

(264)Campeau,L.C.;Parisien,M.;Leblanc,M.;Fagnou,K.J.Am.Chem.

Soc.2004,126,9186.(265)Lafrance,M.;Blaquie´re,N.;Fagnou,K.Chem.Commun.2004,2874.

ChemicalReviews,2007,Vol.107,No.1173(266)Parisien,M.;Valette,D.;Fagnou,K.J.Org.Chem.2005,70,7578.

(267)Bergbreiter,D.E.;Chen,B.J.Chem.Soc.,Chem.Commun.1983,

1238.

(268)Felpin,F.X.;Landais,Y.J.Org.Chem.2005,70,6441.

(269)Cai,M.;Huang,Y.;Zhao,H.;Zhang,R.J.Organomet.Chem.2004,

689,2436.

(270)Mariampillai,B.;Herse,C.;Lautens,M.Org.Lett.2005,7,4745.(271)Gruber,M.;Chouzier,S.;Koehler,K.;Djakovitch,L.Appl.Catal.

A:Gen2004,265,161.

(272)Pal,M.;Subramanian,V.;Batchu,V.R.;Dager,I.Synlett2004,

1965.

(273)Hong,K.B.;Lee,C.W.;Yum,E.K.TetrahedronLett.2004,45,

693.

(274)Arcadi,A.;Marinelli,F.Synthesis1986,749.(275)Lu¨tjens,H.;Scammells,P.J.Synlett1999,1079.(276)Lu¨tjens,H.;Scammells,P.J.TetrahedronLett.1998,39,6581.(277)Kundu,N.G.;Pal,M.;Mahanty,J.S.;Dasgupta,S.K.J.Chem.

Soc.,Chem.Commun.1992,41.

(278)Pal,M.;Subramanian,V.;Yeleswarapu,K.R.TetrahedronLett.2003,

44,8221.

(279)Liao,H.Y.;Cheng,C.H.J.Org.Chem.1995,60,3711.

(280)Subramanian,V.;Batchu,V.R.;Barange,D.;Pal,M.J.Org.Chem.

2005,70,4778.

CR0505674

因篇幅问题不能全部显示,请点此查看更多更全内容

Top