(12)发明专利申请
(10)申请公布号(10)申请公布号 CN 104123703 A(43)申请公布日 2014.10.29
(21)申请号 201410326728.3(22)申请日 2014.07.09
(71)申请人广州中国科学院先进技术研究所
地址511458 广东省广州市南沙经济技术开
发区海滨路1121号(72)发明人邸思 刘鹏 金建 陈贤帅
杜如虚(74)专利代理机构广州嘉权专利商标事务所有
限公司 44205
代理人谭英强(51)Int.Cl.
G06T 5/00(2006.01)G06T 5/50(2006.01)
权利要求书3页 说明书9页 附图4页权利要求书3页 说明书9页 附图4页
(54)发明名称
一种保持表皮原色的静脉显像方法(57)摘要
本发明公开了一种保持表皮原色的静脉显像方法,包括:采集待检测部位的近红外图像与可见光图像;对近红外图像与可见光图像进行配准;对近红外图像进行直方图最值映射,得到与可见光图像亮度分量极值相对应的近红外输出图像;采用主成分分析法分离可见光图像,然后对分离出的色彩分量进行残差增强,最后对残差增强后的可见光图像进行主成分分析逆变换,得到可见光输出图像;对近红外输出图像进行双边滤波,并将双边滤波后的图像与可见光输出图像Z进行融合,得到融合后的彩色图像。本发明解决了传统静脉显示图像不真实的问题,可以保证融合后的彩色图像不仅静脉分布精确且细节明显,还能保持非静脉区域表皮的原色,可广泛应用于医学图像处理领域。
CN 104123703 A CN 104123703 A
权 利 要 求 书
1/3页
1.一种保持表皮原色的静脉显像方法,其特征在于:包括:
A、采集待检测部位的近红外图像与可见光图像;B、对近红外图像与可见光图像进行配准,从而使可见光图像与近红外图像的位置相对应;
C、对近红外图像进行直方图最值映射,从而得到与可见光图像亮度分量极值相对应的近红外输出图像IN;
D、采用主成分分析法分离可见光图像,然后对分离出的色彩分量进行残差增强,最后对残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出图像Z;
E、对近红外输出图像IN进行双边滤波,并将双边滤波后的图像与可见光输出图像Z进行融合,从而得到融合后的彩色图像。
2.根据权利要求1所述的一种保持表皮原色的静脉显像方法,其特征在于:所述步骤B,其包括:
B1、对近红外图像与可见光图像进行去色处理,转化为两幅灰度图像,并以两幅灰度图像的右上角区域作为配准区域,然后提取两幅图像配准区域的边缘特征;
B2、以经过边缘特征提取的近红外配准区域图像作为参考图像,以经过边缘特征提取的可见光配准区域图像作为待配准图像,对待配准图像与参考图像进行特征匹配,从而计算出可见光图像相对于近红外图像的位置偏差;
B3、根据计算的位置偏差平移可见光图像,从而使可见光图像与近红外图像的位置相对应。
3.根据权利要求1所述的一种保持表皮原色的静脉显像方法,其特征在于:所述步骤C,其包括:
C1、对近红外图像与彩色图像进行HIS变换,从而将近红外图像与彩色图像从RGB空间变换到HIS空间;
C2、根据归一化公式对经过HIS变换后的近红外图像的亮度分量进行归一化处理,所述归一化公式为:
其中,pix(x,y)为亮度分量的原始像素值,pix′(x,y)为归一化处理后的像素值,pixmax和pixmin分别为亮度分量的最大值和最小值:
C3、统计经过HIS变换后的可见光图像亮度分量的最大值
与最小值
C4、根据归一化处理和统计的结果对经过HIS变换后的近红外图像进行直方图最值映射,从而得到近红外输出图像IN,所述近红外输出图像IN的亮度分量为:
的表达式
2
CN 104123703 A
权 利 要 求 书
2/3页
4.根据权利要求1所述的一种保持表皮原色的静脉显像方法,其特征在于:所述步骤D,其包括:
D1、将可见光图像的三维彩色图像矩阵x[A,所述二维矩阵X的表B,N]转换为二维矩阵X,达式为:
X=[x(1) x(2) x(3) … x(m)]T,其中,X为M×N阶矩阵,M=A*B,N=3,A、B为可见光图像的长和宽,x(k)为X的列向量,k=1,2,3,…,m,m为M×N阶矩阵的行数;
D2、计算二维矩阵X的协方差矩阵,所述二维矩阵X的协方差矩阵XXT的表达式为:
其中,n为M×N阶矩阵的列数;
D3、计算协方差矩阵XXT的特征值和对应的特征向量,并将计算的结果记为
然后经主成分分析变换由x(k)变换得到结果y(k),所述y(k)的表达式为:y(k)
=QTx(k),其中,r为XXT的秩,q(j)为对应的特征值,Q为PCA变换矩阵,Q=[q(1) q(2) q(3)],且q(1)>q(2)>q(3);
D4、对经主成分分析变换后的可见光图像的色彩分量进行残差增强,从而得到被增强K通道图像信号
所述被增强K通道图像信号
的表达式为:
其中,W为预设的M×M阶矩阵,为y(k)的均值;
D5、对经残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出图像Z。
5.根据权利要求4所述的一种保持表皮原色的静脉显像方法,其特征在于:所述W的第p行、第q列的元素[W]pq的表达式为:
其中,的取值在1到1.8之间,为预先通过计算得到的常数。
6.根据权利要求1所述的一种保持表皮原色的静脉显像方法,其特征在于:所述步骤E,其包括:
E1、采用快速双边滤波算法对近红外输出图像IN进行双边滤波,从而得到双边滤波后的图像
3
CN 104123703 A
权 利 要 求 书
得到差值图像IDT;
3/3页
E2、用近红外输出图像IN减去双边滤波后的图像
E3、将差值图像IDT叠加到近红外输出图像IN上,得到融合后的亮度分量Ifusion;
E4、把得到的亮度分量Ifusion和可见光输出图像Z的颜色信息进行重新组合,从而得到融合后的彩色图像。
7.根据权利要求6所述的一种保持表皮原色的静脉显像方法,其特征在于:所述步骤E1,其具体为:
采用快速双边滤波算法对近红外输出图像IN进行双边滤波,从而得到双边滤波后的图像
所述双边滤波算法所采用的双边滤波公式为:
其中,P和S均为近红外输出图像的像素点,D1(P,S)和D2(P,S)均表示近红外输出图像中P像素点与S像素点的像素差,Ω为S像素点的邻域,IP为近红外输出图像像P像素点的像素值,S为||P-S||为红外输出图像中P像素点与S像素点的欧氏距离,g(P,S)为核密度函数,且满足:
4
CN 104123703 A
说 明 书
一种保持表皮原色的静脉显像方法
1/9页
技术领域
[0001]
本发明涉及医学图像处理领域,尤其是一种保持表皮原色的静脉显像方法。
背景技术
静脉分布图像的获取与处理在个体识别和医学诊疗等领域具有重要的应用价值,已成为生物医学成像领域的重要研究课题之一。由于在可见光波段往往难以获得完整的静脉分布信息,人们通常利用血红蛋白对近红外光的强吸收特性,通过红外成像获取清晰的静脉分布图。借助静脉显示设备进行儿童静脉穿刺,能够显著地提高穿刺的成功率。[0003] 目前,业内主要存在静脉显示和静脉投影这两种获取皮下静脉分布图的方式:静脉显示就是利用近红外光对皮下静脉成像,将相机获得的图像在显示器上显示出来,以供医护人员使用;静脉投影就是利用相机获取皮下静脉在近红外的分布图像,再通过微型投影系统投影精确投影在手上。[0004] 但是,静脉显示和静脉投影会丢失人体皮肤的真实色彩和细节特征,在诊疗过程中给医生带来视觉上的不真实感:静脉显示的静脉分布图像近乎黑白图像,几乎完全丢失了手背原有的色彩信息,而静脉投影所显示的静脉分布图像的颜色主要由投影光的颜色来决定,即辨识区域内的表皮颜色和投影光颜色一致,这就不可避免地导致辨识区域内的表皮颜色失真。为解决这一问题,可对人体表皮的近红外图像和彩色图像进行融合,以提高显示效果。但将传统的图像融合算法应用于静脉图像的显示,会存在色彩失真和细节特征不明显的问题。
[0002]
发明内容
[0005] 为了解决上述技术问题,本发明的目的是:提供一种显示图像真实、不存在色彩失真且细节特征明显的,可保持表皮原色的静脉显像方法。[0006] 本发明解决其技术问题所采用的技术方案是:[0007] 一种保持表皮原色的静脉显像方法,包括:[0008] A、采集待检测部位的近红外图像与可见光图像;[0009] B、对近红外图像与可见光图像进行配准,从而使可见光图像与近红外图像的位置相对应;[0010] C、对近红外图像进行直方图最值映射,从而得到与可见光图像亮度分量极值相对应的近红外输出图像IN;[0011] D、采用主成分分析法分离可见光图像,然后对分离出的色彩分量进行残差增强,最后对残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出图像Z;[0012] E、对近红外输出图像IN进行双边滤波,并将双边滤波后的图像与可见光输出图像Z进行融合,从而得到融合后的彩色图像。[0013] 进一步,所述步骤B,其包括:[0014] B1、对近红外图像与可见光图像进行去色处理,转化为两幅灰度图像,并以两幅灰
5
CN 104123703 A
说 明 书
2/9页
度图像的右上角区域作为配准区域,然后提取两幅图像配准区域的边缘特征;[0015] B2、以经过边缘特征提取的近红外配准区域图像作为参考图像,以经过边缘特征提取的可见光配准区域图像作为待配准图像,对待配准图像与参考图像进行特征匹配,从而计算出可见光图像相对于近红外图像的位置偏差;[0016] B3、根据计算的位置偏差平移可见光图像,从而使可见光图像与近红外图像的位置相对应。
[0017] 进一步,所述步骤C,其包括:[0018] C1、对近红外图像与彩色图像进行HIS变换,从而将近红外图像与彩色图像从RGB空间变换到HIS空间;[0019] C2、根据归一化公式对经过HIS变换后的近红外图像的亮度分量进行归一化处理,所述归一化公式为:
[0020]
[0021]
其中,pix(x,y)为亮度分量的原始像素值,pix′(x,y)为归一化处理后的像素值,pixmax和pixmin分别为亮度分量的最大值和最小值;
C3、统计经过HIS变换后的可见光图像亮度分量的最大值
与最小值
[0022]
[0023] C4、根据归一化处理和统计的结果对经过HIS变换后的近红外图像进行直方图最
的表达
值映射,从而得到近红外输出图像IN,所述近红外输出图像IN的亮度分量式为:
[0024]
进一步,所述步骤D,其包括:[0026] D1、将可见光图像的三维彩色图像矩阵x[A,B,N]转换为二维矩阵X,所述二维矩阵X的表达式为:
(1)(2)(3)(m)T
[0027] X=[x x x … x],[0028] 其中,X为M×N阶矩阵,M=A*B,N=3,A、B为可见光图像的长和宽,x(k)为X的列向量,k=1,2,3,…,m,m为M×N阶矩阵的行数;[0029] D2、计算二维矩阵X的协方差矩阵,所述二维矩阵X的协方差矩阵XXT的表达式为:
[0025] [0030]
[0031] 其中,n为M×N阶矩阵的列数;
6
CN 104123703 A[0032]
说 明 书
3/9页
D3、计算协方差矩阵XXT的特征值和对应的特征向量,并将计算的结果记为
所述y(k)的表达式为:y(k)然后经主成分分析变换由x(k)变换得到结果y(k),
=QTx(k),其中,r为XXT的秩,q(j)为对应的特征值,Q为PCA变换矩阵,Q=[q(1) q(2) q(3)],且q(1)>q(2)>q(3);[0033] D4、对经主成分分析变换后的可见光图像的色彩分量进行残差增强,从而得到被增强K通道图像信号
[0034] [0035] [0036]
所述被增强K通道图像信号的表达式为:
其中,W为预设的M×M阶矩阵,为y(k)的均值;
D5、对经残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出进一步,所述W的第p行、第q列的元素[W]pq的表达式为:
图像Z。
[0037] [0038]
[0039] [0040]
其中,的取值在1到1.8之间,为预先通过计算得到的常数。
进一步,所述步骤E,其包括:[0041] E1、采用快速双边滤波算法对近红外输出图像IN进行双边滤波,从而得到双边滤波后的图像
[0042]
E2、用近红外输出图像IN减去双边滤波后的图像
得到差值图像IDT;
E3、将差值图像IDT叠加到近红外输出图像IN上,得到融合后的亮度分量Ifusion;[0043] E4、把得到的亮度分量Ifusion和可见光输出图像Z的颜色信息进行重新组合,从而得到融合后的彩色图像。[0044] 进一步,所述步骤E1,其具体为:
N
[0045] 采用快速双边滤波算法对近红外输出图像I进行双边滤波,从而得到双边滤波后的图像
所述双边滤波算法所采用的双边滤波公式为:
[0046]
其中,P和S均为近红外输出图像的像素点,D1(P,S)和D2(P,S)均表示近红外输出图像中P像素点与S像素点的像素差,Ω为S像素点的邻域,IP为近红外输出图像像P像素点的像素值,S为||P-S||为红外输出图像中P像素点与S像素点的欧氏距离,g(P,S)为核密度函数,且满足:
[0047] [0048]
7
CN 104123703 A
说 明 书
4/9页
[0049]
本发明的有益效果是:综合采用了直方图最值映射、主成分分析法、残差增强、双边滤波和图像融合来实现静脉显像,解决了传统静脉显示图像不真实的问题,可以保证融合后的彩色图像不仅静脉分布精确且细节明显,还能保持非静脉区域表皮的原色,使医生在静脉穿刺或者其他诊疗过程中更加真实和有效。
附图说明
[0050] 下面结合附图和实施例对本发明作进一步说明。
[0051] 图1为本发明一种保持表皮原色的静脉显像方法的步骤流程图;[0052] 图2为本发明步骤B的流程图;[0053] 图3为本发明步骤C的流程图;
图4为本发明步骤D的流程图;
[0055] 图5为本发明步骤E的流程图;
[0056] 图6为本发明实施例一的静脉显像装置的结构示意图。
[0054]
具体实施方式
[0057] 参照图1,一种保持表皮原色的静脉显像方法,包括:[0058] A、采集待检测部位的近红外图像与可见光图像;[0059] B、对近红外图像与可见光图像进行配准,从而使可见光图像与近红外图像的位置相对应;[0060] C、对近红外图像进行直方图最值映射,从而得到与可见光图像亮度分量极值相对应的近红外输出图像IN;[0061] D、采用主成分分析法分离可见光图像,然后对分离出的色彩分量进行残差增强,最后对残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出图像Z;[0062] E、对近红外输出图像IN进行双边滤波,并将双边滤波后的图像与可见光输出图像Z进行融合,从而得到融合后的彩色图像。[0063] 参照图2,进一步作为优选的实施方式,所述步骤B,其包括:[0064] B1、对近红外图像与可见光图像进行去色处理,转化为两幅灰度图像,并以两幅灰度图像的右上角区域作为配准区域,然后提取两幅图像配准区域的边缘特征;[0065] B2、以经过边缘特征提取的近红外配准区域图像作为参考图像,以经过边缘特征提取的可见光配准区域图像作为待配准图像,对待配准图像与参考图像进行特征匹配,从而计算出可见光图像相对于近红外图像的位置偏差;[0066] B3、根据计算的位置偏差平移可见光图像,从而使可见光图像与近红外图像的位置相对应。
[0067] 参照图3,进一步作为优选的实施方式,所述步骤C,其包括:
8
CN 104123703 A[0068]
说 明 书
5/9页
C1、对近红外图像与彩色图像进行HIS变换,从而将近红外图像与彩色图像从RGB空间变换到HIS空间;[0069] C2、根据归一化公式对经过HIS变换后的近红外图像的亮度分量进行归一化处理,所述归一化公式为:
[0070]
[0071]
其中,pix(x,y)为亮度分量的原始像素值,pix′(x,y)为归一化处理后的像素值,pixmax和pixmin分别为亮度分量的最大值和最小值;
C3、统计经过HIS变换后的可见光图像亮度分量的最大值
与最小值
[0072]
[0073] C4、根据归一化处理和统计的结果对经过HIS变换后的近红外图像进行直方图最
的表达
值映射,从而得到近红外输出图像IN,所述近红外输出图像IN的亮度分量式为:
[0074]
参照图4,进一步作为优选的实施方式,所述步骤D,其包括:[0076] D1、将可见光图像的三维彩色图像矩阵x[A,B,N]转换为二维矩阵X,所述二维矩阵X的表达式为:
(1)(2)(3)(m)T
[0077] X=[x x x … x],[0078] 其中,X为M×N阶矩阵,M=A*B,N=3,A、B为可见光图像的长和宽,x(k)为X的列向量,k=1,2,3,…,m,m为M×N阶矩阵的行数;[0079] D2、计算二维矩阵X的协方差矩阵,所述二维矩阵X的协方差矩阵XXT的表达式为:
[0075] [0080]
[0081] [0082]
其中,n为M×N阶矩阵的列数;
D3、计算协方差矩阵XXT的特征值和对应的特征向量,并将计算的结果记为
然后经主成分分析变换由x(k)变换得到结果y(k),所述y(k)的表达式为:y(k)
=QTx(k),其中,r为XXT的秩,q(j)为对应的特征值,Q为PCA变换矩阵,Q=[q(1) q(2) q(3)],
且q(1)>q(2)>q(3);[0083] D4、对经主成分分析变换后的可见光图像的色彩分量进行残差增强,从而得到被
9
CN 104123703 A
说 明 书
所述被增强K通道图像信号
的表达式为:
6/9页
增强K通道图像信号
[0084] [0085] [0086]
其中,W为预设的M×M阶矩阵,为y(k)的均值;
D5、对经残差增强后的可见光图像进行主成分分析逆变换,从而得到可见光输出进一步作为优选的实施方式,所述W的第p行、第q列的元素[W]pq的表达式为:
图像Z。
[0087] [0088]
[0089] [0090]
其中,的取值在1到1.8之间,为预先通过计算得到的常数。
融合后得到的彩色图像与原可见光图像先经过主成分变换,接着进行两亮度分量
均值差计算,最后将计算的均值差除以6即可得出
进一步作为优选的实施方式,所述步骤E,其包括:[0092] E1、采用快速双边滤波算法对近红外输出图像IN进行双边滤波,从而得到双边滤
[0091]
波后的图像
[0093] [0094]
E2、用近红外输出图像IN减去双边滤波后的图像
得到差值图像IDT;
E3、将差值图像IDT叠加到近红外输出图像IN上,得到融合后的亮度分量Ifusion;[0095] E4、把得到的亮度分量Ifusion和可见光输出图像Z的颜色信息进行重新组合,从而得到融合后的彩色图像。
[0096] 进一步作为优选的实施方式,所述步骤E1,其具体为:
N
[0097] 采用快速双边滤波算法对近红外输出图像I进行双边滤波,从而得到双边滤波后的图像
所述双边滤波算法所采用的双边滤波公式为:
[0098]
其中,P和S均为近红外输出图像的像素点,D1(P,S)和D2(P,S)均表示近红外输出图像中P像素点与S像素点的像素差,Ω为S像素点的邻域,IP为近红外输出图像像P像素点的像素值,S为||P-S||为红外输出图像中P像素点与S像素点的欧氏距离,g(P,S)
[0099]
为核密度函数,且满足:
[0100]
10
CN 104123703 A
说 明 书
7/9页
下面结合具体实施例对本发明作进一步详细说明。[0102] 实施例一[0103] 参照图6,本发明的第一实施例:
[0104] 本发明的静脉显像装置用于将既能清晰准确显示静脉分布又能保持非静脉区域原色彩的静脉图像显示在显示器上,包括显示器1和图像处理模块2。[0105] 而图像处理模块2包括:[0106] 数字图像处理芯片,用于完成本发明一种保持表皮原色的静脉显像方法的具体实施流程,其输入端连接可见光图像获取模块与近红外图像获取模块,输出端则用于显示处理后的结果的连接显示器1;
[0101]
置于目标物7右上角的匹配标识物5,用于图像配准时的特征标识。
[0108] 目标物7置于基板6的中间,在成像系统的成像范围内。置于目标物7上方的成像系统包括:
[0107]
可见光图像获取模块3与置于可见光图像获取模块3正下方的近红外(在
750nm-2500nm的波段)截止滤光片4,该滤光片用于截止750nm以上的光谱信息。可见光图像获取模块3与滤光片4结合获取目标物7的可见光图像。
[0110] 近红外图像获取模块9与置于近红外图像获取模9正下方的可见光(在400-700nm的波段)截止滤光片8,该滤光片用于截止400-700nm的光谱信息。滤光片8与近红外图像获取模块9结合获取目标物7的近红外图像。
[0111] 可见光与近红外波段光源10置于目标物正上方且固定在相机镜头两侧,用于照射目标物。该光源由光谱波段在380-1100nm的LED组成。[0112] 基于上述静脉显像装置,本发明一种保持表皮原色彩的静脉显像方法可以采用以下流程来实现:
[0113] a.将待检测部位置于基板的图像采集区;[0114] b.用基板上方的光源10照射目标物;
[0109]
c.用可见光图像获取装置与近红外图像获取装置同时获取目标物的图像;
[0116] d.通过图像处理模块完成本发明所述的图像处理流程,输出处理后图像;[0117] e.通过显示器将处理后图像显示出来。[0118] 实施例二
[0119] 本发明提出了一种实时的基于直方图最值映射、主成分分析和双边滤波的图像融合方法,用于体内或者体外表皮的近红外与彩色图像融合。该方法处理速度快,从而实时、快速、高效地获得既包含表皮下静脉分布,又保持表皮原来颜色的图像。[0120] 本发明一种保持表皮原色的静脉显像方法的具体实现过程如下:[0121] 步骤S1:采集待检测部位的近红外与可见光图像;[0122] 步骤S2:根据在同一场景获取的近红外图像与彩色图像进行图像配准;
[0115]
11
CN 104123703 A[0123]
说 明 书
8/9页
图像配准过程进一步可分为:[0124] S21、在目标区域的右上角标记一个特殊符号(例如十字架)作为配准的特征图像;
[0125] S22、将近红外与可见光图像去色,转化为灰度图像并取两幅灰度图像的右上角区域作为配准区域,用Harris算子(或其他类似作用的算子)提取两幅图像配准区域边缘特征;
[0126] S23、以经过边缘特征提取的近红外配准区域图像作为参考图像,以经过边缘特征提取的可见光配准区域图像作为待配准图像,对待配准图像与参考图像进行特征匹配,从而计算出可见光图像相对于近红外图像的位置偏差;[0127] S24、根据得到的位置偏差平移可见光图像,从而使两幅图像位置对应。[0128] 步骤S3:对近红外图像进行直方图最值映射,输出近红外图像IN;[0129] 直方图最值映射进一步可分为:[0130] S31、对近红外图像与彩色图像进行HIS(色调、饱和度、亮度)变换,将两幅图像从RGB空间变换到HIS空间;[0131] S32、对变换后的近红外图像亮度分量进行归一化处理,所采用的公式为:
[0132]
S33、统计经过HIS变换后的可见光图像亮度分量的最大值pixmax与最小值pixmin;[0134] S34、使近红外图像与彩色图像亮度分量的极值对应,从而输出图像IN,输出图像
[0133]
IN的亮度分量
[0135]
的表达式为:
步骤S4:对可见光进行色彩残差增强,从而输出可见光输出图像Z;[0137] 利用主成分分析法处理输入的可见光彩色图像得到三个分量,第一个分量代表亮度信息,其余两个分量代表色彩信息,再对色彩分量进行残差增强,具体如下:[0138] S41、将三维彩色图像矩阵x[A,B,N]转换为二维矩阵X;[0139] S42、计算二维矩阵X的协方差矩阵XXT;
[0136] [0140]
S43、计算协方差矩阵XXT的特征值和对应的特征向量,记为
并经
主成分分析变换后得到x(k)进行主成分分析变换后的结果y(k),所述y(k)的表达式为:y(k)=QTx(k),其中,r为XXT的秩,q(j)为对应的特征值,Q为PCA变换矩阵,Q=[q(1) q(2) q(3)],且q(1)>q(2)>q(3);S43、对可见光图像的色彩分量进行残差加权增强。[0141] 步骤S5,图像双边滤波与融合。
[0142]
首先,采用快速双边滤波算法对输出的图像IN进行双边滤波,输出
其中所用
的双边滤波公式为:
12
CN 104123703 A
说 明 书
9/9页
[0143]
[0144] [0145] [0146]
而滤波核函数采用:
接着,用图像IN减去快速输出的
获得的图像IDT,其表达式为:
然后,将图像IDT叠加到IN上,即可得到融合后的亮度分量Ifusion,即:
N
[0148] Ifusion=I+IDT;[0149] 最后,把该亮度分量Ifusion和图像Z的颜色信息(即色度、饱和度)重新组合即可得到融合后的彩色图像。
[0150] 本发明综合采用了直方图最值映射、主成分分析法、残差增强、双边滤波和图像融合来实现静脉显像,解决了传统静脉显示图像不真实的问题,可以保证融合后的彩色图像不仅静脉分布精确且细节明显,还能保持非静脉区域表皮的原色,使医生在静脉穿刺或者其他诊疗过程中更加真实和有效。
[0151] 以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
[0147]
13
CN 104123703 A
说 明 书 附 图
1/4页
图1
图2
14
CN 104123703 A
说 明 书 附 图
2/4页
图3
图4
15
CN 104123703 A
说 明 书 附 图
3/4页
图5
16
CN 104123703 A
说 明 书 附 图
4/4页
图6
17
因篇幅问题不能全部显示,请点此查看更多更全内容