您好,欢迎来到知库网。
搜索
您的当前位置:首页Python实现CART(基尼指数)

Python实现CART(基尼指数)

来源:知库网
Python实现CART(基尼指数)

Python实现CART(基尼指数)

运⾏环境

Pyhton3

treePlotter模块(画图所需,不画图可不必)matplotlib(如果使⽤上⾯的模块必须)

计算过程

st=>start: 开始e=>end

op1=>operation: 读⼊数据op2=>operation: 格式化数据cond=>condition: 是否建树完成su=>subroutine: 递归建树

op3=>operation: 选择基尼指数最⼩的为判决点op4=>operation: 测试判决情况

op5=>operation: 划分为判决节点⼦树st->op1->op2->cond

cond(no)->su->op5->op3->sucond(yes)->op4->e

输⼊样例

/* Dataset.txt */训练集:

outlook temperature humidity windy --------------------------------------------------------- sunny hot high false N sunny hot high true N overcast hot high false Y rain mild high false Y rain cool normal false Y rain cool normal true N overcast cool normal true Y测试集

outlook temperature humidity windy --------------------------------------------------------- sunny mild high false sunny cool normal false rain mild normal false sunny mild normal true overcast mild high true overcast hot normal false rain mild high true

代码实现

# -*- coding: utf-8 -*-__author__ = 'Wsine'from math import logimport operator

import treePlotter

def calcShannonEnt(dataSet): \"\"\"

输⼊:数据集

输出:数据集的⾹农熵

描述:计算给定数据集的⾹农熵 \"\"\"

numEntries = len(dataSet) labelCounts = {}

for featVec in dataSet: currentLabel = featVec[-1]

if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0

for key in labelCounts:

prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt

def splitDataSet(dataSet, axis, value): \"\"\"

输⼊:数据集,选择维度,选择值 输出:划分数据集

描述:按照给定特征划分数据集;去除选择维度中等于选择值的项 \"\"\"

retDataSet = []

for featVec in dataSet: if featVec[axis] == value:

reduceFeatVec = featVec[:axis]

reduceFeatVec.extend(featVec[axis+1:]) retDataSet.append(reduceFeatVec) return retDataSet

def chooseBestFeatureToSplit(dataSet): \"\"\"

输⼊:数据集

输出:最好的划分维度

描述:选择最好的数据集划分维度 \"\"\"

numFeatures = len(dataSet[0]) - 1 bestGini = 999999.0 bestFeature = -1

for i in range(numFeatures):

featList = [example[i] for example in dataSet] uniqueVals = set(featList) gini = 0.0

for value in uniqueVals:

subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet))

subProb = len(splitDataSet(subDataSet, -1, 'N')) / float(len(subDataSet)) gini += prob * (1.0 - pow(subProb, 2) - pow(1 - subProb, 2)) if (gini < bestGini): bestGini = gini bestFeature = i return bestFeature

def majorityCnt(classList): \"\"\"

输⼊:分类类别列表 输出:⼦节点的分类

描述:数据集已经处理了所有属性,但是类标签依然不是唯⼀的, 采⽤多数判决的⽅法决定该⼦节点的分类 \"\"\"

classCount = {}

for vote in classList:

if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1

sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True) return sortedClassCount[0][0]

def createTree(dataSet, labels): \"\"\"

输⼊:数据集,特征标签 输出:决策树

描述:递归构建决策树,利⽤上述的函数 \"\"\"

classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): # 类别完全相同,停⽌划分 return classList[0] if len(dataSet[0]) == 1:

# 遍历完所有特征时返回出现次数最多的 return majorityCnt(classList)

bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel:{}} del(labels[bestFeat])

# 得到列表包括节点所有的属性值

featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:]

myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree

def classify(inputTree, featLabels, testVec): \"\"\"

输⼊:决策树,分类标签,测试数据 输出:决策结果 描述:跑决策树 \"\"\"

firstStr = list(inputTree.keys())[0] secondDict = inputTree[firstStr]

featIndex = featLabels.index(firstStr) classLabel = 'N'

for key in secondDict.keys(): if testVec[featIndex] == key:

if type(secondDict[key]).__name__ == 'dict':

classLabel = classify(secondDict[key], featLabels, testVec) else:

classLabel = secondDict[key]

return classLabel

def classifyAll(inputTree, featLabels, testDataSet): \"\"\"

输⼊:决策树,分类标签,测试数据集 输出:决策结果 描述:跑决策树 \"\"\"

classLabelAll = []

for testVec in testDataSet:

classLabelAll.append(classify(inputTree, featLabels, testVec)) return classLabelAll

def storeTree(inputTree, filename): \"\"\"

输⼊:决策树,保存⽂件路径 输出:

描述:保存决策树到⽂件 \"\"\"

import pickle

fw = open(filename, 'wb') pickle.dump(inputTree, fw) fw.close()

def grabTree(filename): \"\"\"

输⼊:⽂件路径名 输出:决策树

描述:从⽂件读取决策树 \"\"\"

import pickle

fr = open(filename, 'rb') return pickle.load(fr)

def createDataSet(): \"\"\"

outlook-> 0: sunny | 1: overcast | 2: rain temperature-> 0: hot | 1: mild | 2: cool humidity-> 0: high | 1: normal windy-> 0: false | 1: true \"\"\"

dataSet = [[0, 0, 0, 0, 'N'], [0, 0, 0, 1, 'N'], [1, 0, 0, 0, 'Y'], [2, 1, 0, 0, 'Y'], [2, 2, 1, 0, 'Y'], [2, 2, 1, 1, 'N'], [1, 2, 1, 1, 'Y']]

labels = ['outlook', 'temperature', 'humidity', 'windy'] return dataSet, labels

def createTestSet(): \"\"\"

outlook-> 0: sunny | 1: overcast | 2: rain temperature-> 0: hot | 1: mild | 2: cool humidity-> 0: high | 1: normal windy-> 0: false | 1: true

\"\"\"

testSet = [[0, 1, 0, 0], [0, 2, 1, 0], [2, 1, 1, 0], [0, 1, 1, 1], [1, 1, 0, 1], [1, 0, 1, 0], [2, 1, 0, 1]] return testSet

def main():

dataSet, labels = createDataSet()

labels_tmp = labels[:] # 拷贝,createTree会改变labels desicionTree = createTree(dataSet, labels_tmp) #storeTree(desicionTree, 'classifierStorage.txt') #desicionTree = grabTree('classifierStorage.txt') print('desicionTree:\\n', desicionTree) treePlotter.createPlot(desicionTree) testSet = createTestSet()

print('classifyResult:\\n', classifyAll(desicionTree, labels, testSet))if __name__ == '__main__': main()

输出样例

desicionTree:

{'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}classifyResult:

['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']

附加⽂件

treePlotter.py

需要配置matplotlib才能使⽤

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle=\"sawtooth\leafNode = dict(boxstyle=\"round4\arrow_args = dict(arrowstyle=\"<-\")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):

createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \\ xytext=centerPt, textcoords='axes fraction', \\

va=\"center\def getNumLeafs(myTree): numLeafs = 0

firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys():

if type(secondDict[key]).__name__ == 'dict': numLeafs += getNumLeafs(secondDict[key]) else:

numLeafs += 1 return numLeafs

def getTreeDepth(myTree): maxDepth = 0

firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys():

if type(secondDict[key]).__name__ == 'dict': thisDepth = getTreeDepth(secondDict[key]) + 1 else:

thisDepth = 1

if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth

def plotMidText(cntrPt, parentPt, txtString):

xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0] yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt): numLeafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = list(myTree.keys())[0]

cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt)

plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr]

plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD for key in secondDict.keys():

if type(secondDict[key]).__name__ == 'dict': plotTree(secondDict[key], cntrPt, str(key)) else:

plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw

plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)

plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalDdef createPlot(inTree):

fig = plt.figure(1, facecolor='white') fig.clf()

axprops = dict(xticks=[], yticks=[])

createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) plotTree.totalw = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5 / plotTree.totalw plotTree.yOff = 1.0

plotTree(inTree, (0.5, 1.0), '') plt.show()

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- zicool.com 版权所有 湘ICP备2023022495号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务