Python实现CART(基尼指数)
运⾏环境
Pyhton3
treePlotter模块(画图所需,不画图可不必)matplotlib(如果使⽤上⾯的模块必须)
计算过程
st=>start: 开始e=>end
op1=>operation: 读⼊数据op2=>operation: 格式化数据cond=>condition: 是否建树完成su=>subroutine: 递归建树
op3=>operation: 选择基尼指数最⼩的为判决点op4=>operation: 测试判决情况
op5=>operation: 划分为判决节点⼦树st->op1->op2->cond
cond(no)->su->op5->op3->sucond(yes)->op4->e
输⼊样例
/* Dataset.txt */训练集:
outlook temperature humidity windy --------------------------------------------------------- sunny hot high false N sunny hot high true N overcast hot high false Y rain mild high false Y rain cool normal false Y rain cool normal true N overcast cool normal true Y测试集
outlook temperature humidity windy --------------------------------------------------------- sunny mild high false sunny cool normal false rain mild normal false sunny mild normal true overcast mild high true overcast hot normal false rain mild high true
代码实现
# -*- coding: utf-8 -*-__author__ = 'Wsine'from math import logimport operator
import treePlotter
def calcShannonEnt(dataSet): \"\"\"
输⼊:数据集
输出:数据集的⾹农熵
描述:计算给定数据集的⾹农熵 \"\"\"
numEntries = len(dataSet) labelCounts = {}
for featVec in dataSet: currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt
def splitDataSet(dataSet, axis, value): \"\"\"
输⼊:数据集,选择维度,选择值 输出:划分数据集
描述:按照给定特征划分数据集;去除选择维度中等于选择值的项 \"\"\"
retDataSet = []
for featVec in dataSet: if featVec[axis] == value:
reduceFeatVec = featVec[:axis]
reduceFeatVec.extend(featVec[axis+1:]) retDataSet.append(reduceFeatVec) return retDataSet
def chooseBestFeatureToSplit(dataSet): \"\"\"
输⼊:数据集
输出:最好的划分维度
描述:选择最好的数据集划分维度 \"\"\"
numFeatures = len(dataSet[0]) - 1 bestGini = 999999.0 bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet] uniqueVals = set(featList) gini = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet))
subProb = len(splitDataSet(subDataSet, -1, 'N')) / float(len(subDataSet)) gini += prob * (1.0 - pow(subProb, 2) - pow(1 - subProb, 2)) if (gini < bestGini): bestGini = gini bestFeature = i return bestFeature
def majorityCnt(classList): \"\"\"
输⼊:分类类别列表 输出:⼦节点的分类
描述:数据集已经处理了所有属性,但是类标签依然不是唯⼀的, 采⽤多数判决的⽅法决定该⼦节点的分类 \"\"\"
classCount = {}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True) return sortedClassCount[0][0]
def createTree(dataSet, labels): \"\"\"
输⼊:数据集,特征标签 输出:决策树
描述:递归构建决策树,利⽤上述的函数 \"\"\"
classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): # 类别完全相同,停⽌划分 return classList[0] if len(dataSet[0]) == 1:
# 遍历完所有特征时返回出现次数最多的 return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel:{}} del(labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree
def classify(inputTree, featLabels, testVec): \"\"\"
输⼊:决策树,分类标签,测试数据 输出:决策结果 描述:跑决策树 \"\"\"
firstStr = list(inputTree.keys())[0] secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) classLabel = 'N'
for key in secondDict.keys(): if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec) else:
classLabel = secondDict[key]
return classLabel
def classifyAll(inputTree, featLabels, testDataSet): \"\"\"
输⼊:决策树,分类标签,测试数据集 输出:决策结果 描述:跑决策树 \"\"\"
classLabelAll = []
for testVec in testDataSet:
classLabelAll.append(classify(inputTree, featLabels, testVec)) return classLabelAll
def storeTree(inputTree, filename): \"\"\"
输⼊:决策树,保存⽂件路径 输出:
描述:保存决策树到⽂件 \"\"\"
import pickle
fw = open(filename, 'wb') pickle.dump(inputTree, fw) fw.close()
def grabTree(filename): \"\"\"
输⼊:⽂件路径名 输出:决策树
描述:从⽂件读取决策树 \"\"\"
import pickle
fr = open(filename, 'rb') return pickle.load(fr)
def createDataSet(): \"\"\"
outlook-> 0: sunny | 1: overcast | 2: rain temperature-> 0: hot | 1: mild | 2: cool humidity-> 0: high | 1: normal windy-> 0: false | 1: true \"\"\"
dataSet = [[0, 0, 0, 0, 'N'], [0, 0, 0, 1, 'N'], [1, 0, 0, 0, 'Y'], [2, 1, 0, 0, 'Y'], [2, 2, 1, 0, 'Y'], [2, 2, 1, 1, 'N'], [1, 2, 1, 1, 'Y']]
labels = ['outlook', 'temperature', 'humidity', 'windy'] return dataSet, labels
def createTestSet(): \"\"\"
outlook-> 0: sunny | 1: overcast | 2: rain temperature-> 0: hot | 1: mild | 2: cool humidity-> 0: high | 1: normal windy-> 0: false | 1: true
\"\"\"
testSet = [[0, 1, 0, 0], [0, 2, 1, 0], [2, 1, 1, 0], [0, 1, 1, 1], [1, 1, 0, 1], [1, 0, 1, 0], [2, 1, 0, 1]] return testSet
def main():
dataSet, labels = createDataSet()
labels_tmp = labels[:] # 拷贝,createTree会改变labels desicionTree = createTree(dataSet, labels_tmp) #storeTree(desicionTree, 'classifierStorage.txt') #desicionTree = grabTree('classifierStorage.txt') print('desicionTree:\\n', desicionTree) treePlotter.createPlot(desicionTree) testSet = createTestSet()
print('classifyResult:\\n', classifyAll(desicionTree, labels, testSet))if __name__ == '__main__': main()
输出样例
desicionTree:
{'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}classifyResult:
['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']
附加⽂件
treePlotter.py
需要配置matplotlib才能使⽤
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle=\"sawtooth\leafNode = dict(boxstyle=\"round4\arrow_args = dict(arrowstyle=\"<-\")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \\ xytext=centerPt, textcoords='axes fraction', \\
va=\"center\def getNumLeafs(myTree): numLeafs = 0
firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict': numLeafs += getNumLeafs(secondDict[key]) else:
numLeafs += 1 return numLeafs
def getTreeDepth(myTree): maxDepth = 0
firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict': thisDepth = getTreeDepth(secondDict[key]) + 1 else:
thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0] yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt): numLeafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = list(myTree.keys())[0]
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict': plotTree(secondDict[key], cntrPt, str(key)) else:
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalDdef createPlot(inTree):
fig = plt.figure(1, facecolor='white') fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) plotTree.totalw = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5 / plotTree.totalw plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '') plt.show()
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- zicool.com 版权所有 湘ICP备2023022495号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务