二氧化碳气体保护焊目前应用较多的是半自动焊,即焊丝送进靠机械自动进行,由焊手持焊炬进行焊接操作。CO2气体保护焊的焊接过程如图3-7所示。焊丝由送丝机构通过软管经导电嘴送出,而CO2气体
从喷嘴内以一定的流量流出,当焊丝与焊件接触引燃电弧后,连续送给的焊丝末端和熔池被CO2气体层流所保护,使熔融金属与大气造成机械隔离,从而防止了空气对熔化金属的有害作用。
二氧化碳气体保护焊具有成本低、抗氢气孔能力强、适合薄板接、易进行全位置焊等优点,广泛应用于低碳钢和低合金钢等黑色金属材料的焊接。
二氧化碳气体保护焊的熔滴过渡型式主要有滴状过渡
图3-7 CO2焊的焊接过程示意
和短路过渡二种。由于滴状过渡焊接,飞溅大、工艺过程不稳定,因此生产中较少采用。短路过渡焊接过程的特点是弧长较短,焊丝端部的熔长达到一定程度时与熔池接触发生短路,此时电弧熄灭,形成焊丝与熔池之间的液体金属过桥,焊丝熔化金属在重力、表面张力和电磁收缩力等力的作用下过渡到熔池,之后电弧重新引燃,再重复上述过程。如果焊接参数选择得当,短路过渡电弧的燃烧。熄灭和熔滴过渡过程均较稳定,在要求线能量较小的薄板焊接生产中广为采用,通常提到的CO2气体保护电弧焊指的都是短路过渡CO2气体保护电孤焊。
二氧化碳气体保护焊的主要缺点是焊接过程中产生金属飞溅。飞溅不但会降低焊丝的熔敷系数,增加焊接成本,而且飞溅金属会粘着导电嘴端面和喷嘴内壁,引起送丝不畅,使电弧燃烧不稳定,降低气体保护作用,并使劳动条件恶化。必要时需停止焊接,进行喷嘴清理工作。这对于自动化焊接是不利的。短路过渡焊接时飞溅的原因有多种:熔滴短路时的电爆炸、溶滴金属内部的气体热膨胀及短路后电弧
重新引燃时的动力冲击等。
采用短路过渡CO2焊时,由于焊丝细,电压低,电流小且短路与燃弧过程交替出现,母材熔深主要决定于燃弧期电弧的能量,调间燃弧时间便可控制母材熔深,因此,可以实现薄板或全位置焊接。
因篇幅问题不能全部显示,请点此查看更多更全内容