搜索
您的当前位置:首页正文

2012年黑龙江省数据理论高级

来源:知库网
1、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)

2、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[];

scanf( \"%d%d\输入边数和顶点数。

for (i=1;i<=e;i++) //输入e条边:顶点,权值。

scanf(\"%d%d%d\" ,&edge[i].i ,&edge[i].j ,&edge[i].w);

for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。 {edge[0]=edge[i]; j=i-1;

while (edge[j].wwhile (eg>=n) //破圈,直到边数e=n-1. {if (connect(k)) //删除第k条边若仍连通。

{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边 }//while }//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现,

3、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。

int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。 const n=用户定义的顶点数;

AdjList g ; //用邻接表作存储结构的有向图g。 void dfs(v)

{visited [v]=1; num++; //访问的顶点数+1

if (num==n) {printf(“%d是有向图的根。\\n”,v); num=0;}//if p=g[v].firstarc; while (p)

{if (visied[p->adjvex]==0) dfs (p->adjvex); p=p->next;} //while

visited[v]=0; num--; //恢复顶点v

}//dfs

void JudgeRoot()

//判断有向图是否有根,有根则输出之。 {static int i ;

for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。 {num=0; visited[1..n]=0; dfs(i); } }// JudgeRoot

算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top