P.M.V.B.BaroneandA.C.R.Mendes∗
DepartamentodeF´ısica,UniversidadeFederaldeJuizdeFora,
36036-330,JuizdeFora,MG,Brasil
February6,2008
Abstract
WepresentaLagrangianformalismtothedissipativesystemofachargeinteractingwithitsownradiationfield,whichgivesrisetotheradiationdamping[11],bytheindirectrepresentationdoublingthephase-spacedimensions.
1Introduction
Thestudyofdissipativesystemsinquantumtheoryisofstronginterestandrelevanceeitherforfundamentalreasons[5]andforitspracticalapplications[2,6].TheexplicittimedependenceoftheLagrangianandHamiltonianoperatorsintroducesamajordifficultytothisstudysincethecanonicalcommutationrelationsarenotpreservedbytimeevolution.Thendifferentapproacheshavebeenusedinordertoapplythecanonicalquantizationschemetodissipativesystems(see,forinstance,[8,7]).
Oneoftheseapproachesistofocusonanisolatedsystemcomposedbytheoriginaldissipativesystemplusareservoir.OnestartfromthebeginningwithaHamiltonianwhichdescribesthesystem,thebathandthesystem-bathinteraction.Subsequently,oneeliminatesthebathvariableswhichgiverisetobothdampingandfluctuations,thusobtainingthereduceddensitymatrix[1,2,3,4,7].
Anotherwaytohandletheproblemofquantumdissipativesystemsistodoublethephase-spacedimensions,soastodealwithaneffectiveisolatedsystemcomposedbytheoriginalsystemplusitstime-reversedcopy(indirectrepresentation)[9,10].Thenewdegreesoffreedomthusintroducedmayberepresentedbyasingleequivalent(collective)degreeoffreedomforthebath,whichabsorbstheenergydissipatedbythesystem.
Thestudyofthequantumdynamicsofanacceleratedchargeisappropriatedtousetheindirectrepresentationsinceitlosestheenergy,thelinearmomentum,andtheangularmomentumcarriedbytheradiationfield[11].Theeffectoftheselossestothemotionofchargeisknowasradiationdamping[11].
ThereactionofaclassicalpointchargetoitsownradiationwasfirstdiscussedbyLorentzandAbrahammorethanonehundredyearsago,andneverstoppedbeingasourceofcontroversyandfascination[12,13].Nowadays,itisprobablyfairtosaythatthemostdisputableaspectsoftheAbraham-Lorentztheory,suchasself-accelerationandpreacceleration,havebeenadequatelyunderstood.Self-accelerationreferstoclassicalsolutionswherethechargeisunderacceleration
evenintheabsenceofanexternalfield.Preaccelerationmeansthatthechargebeginstoacceleratebeforetheforceisactuallyapplied.
Theprocessofradiationdampingisimportantinmanyareasofelectronacceleratoroperation[14],asinrecentexperimentswithintense-laserrelativistic-electronscatteringatlaserfrequenciesandfieldstrengthswhereradiationreactionforcesbegintobecomesignificant[15,16].
ThepurposeofthisletteristopresentaLagrangianformalismtothestudyofquantumdynam-icsofacceleratedcharge,yieldinganeffectiveisolatedsystem,wherethecanonicalcommutationrelationsarepreservedbytimeevolution.InSection2webrieflyreviewtheequationofmotionoftheradiationdampingandaspectsofthesolutionstotheequationofmotion.Insection3wepresentaLagrangiandescriptiontotheradiationdampingbytheindirectrepresentation,doublingthephase-spacedimensions.Section4containstheconcludingremarks.
2Theequationofmotion
Thederivationofanexactexpressionfortheradiationdampingforcehaslongbeenanoutstantingproblemofclassicalelectrodynamics[8,11,12,13,15,17,18,19].IntheclassicderivationgivenbyLorentzandAbraham[12,13],whichreliesonenergy-momentumconservation,theself-electro-magnetic-energyandmomentumofachargedrigidspherearederivedforanacceleratedmotion.Inthisfirst-orderapproximation,thisderivationyieldsthewell-knownAbraham-Lorentzforcewhichdependsonthesecondtimederivativeoftheparticlevelocityofmassmandchargee:
m
dv
dt2
=F
,(1)
whereτ0=2e2/3mc3,cisthevelocityoflight,v=dr/dtdenotesthevelocityofF
thecharge,and
istheexternalforce.Afullyrelativisticformulationoftheequationofmotionwasonlyachievedin1938byDiracinhisclassicpaper[20],wheretheLorentz-Diracequationreads
maµ=
e
µλ
3c3
a˙−aaλ
uµ
freeparticle[20].Inthiscase,thesolutionofEq.(1),withthehelpoftheintegratingfactoret/τ0,
forarathergeneraltime-dependentforceF
(t)readsmdv
d2
v¯dt
+τ0
dtr˙−τ...0r+
∂Vdt
r˙...
¯+τ0r¯+∂V∂r
=−F
¯and∂V
2
r
˙.¨r¯−¨r.r˙¯
−V(r,r¯)
,whereγ=mτ0=2e2/3c3.Itisthenpossibletoidentify
L=mr
˙.r˙¯+γ(8)
astheappropriateLagrangianintheindirectrepresentation.So,thesystemmadeoftheradiationdampingandofitstime-reversedimagegloballybehavesasaclosedsystem.TheLagrangian(9)canbewritteninasuggestiveformbysubtitutionofthehyperboliccoordinatesr1andr2[25]definedby
11
¯=(10)r=r(1)+r(2);rr(1)−r(2)
22
WefindthattheLagrangianLbecomes
m˙(i).¨ǫijrr(j)−V[r(1),r(2)](11)L=
2
wherethepseudo-euclidianmetricgijisgivenbyg11=−g22=1,g12=0andǫ12=−ǫ21=1.ThisLagrangianissimilartotheonediscussedbyLukierskietal[26](thatisaspecialnonrelativisticlimitofrelativisticmodeloftheparticlewithtorsioninvestigatedin[27]),butinthiscasewehaveapseudo-euclidianmetric.TheequationsofmotioncorrespondingtotheLagrangian(11)are
...∂V¨mr(1)−γr(2)=−
∂r(1)
.(12)
Onthehyperbolicplane,theequations(12)showsthatthedissipativetermactullyactsasa
couplingbetweenthesystemsr(1)andr(2).
Recently,oneofus,in[28]havestudiedthecanonicalquantizationoftheradiationdamping.AHamiltoniananalysisisdoneincommutativeandnoncommutativescenarios,whatleadstothequantizationofthesystem,wherethedynamicalgroupstructureassociatedwithoursystemisthatofSU(1,1).In[29],asupersymmetrizedversionofthemodeltotheradiationdamping,Eq.(11),wasdeveloped.ItssymmetriesandthecorrespondingconservedNoetherchargeswerediscused.ItisshownthatthissupersymmetricversionprovidesasupersymmetricgeneralizationoftheGalileialgebraofthemodel[28],wherethesupersymmetricactioncanbesplitintodynamicallyindependentexternalandinternalsectors.
4Concludingremarks
Wehaveshownthatinthepseudo-Euclideanmetricsthesystemmadeofachargeinteractingwithitsownradiationanditstime-reversedimage,introducedbydoublingthedegreesoffreedomasrequiredbythecanonicalformalism,actuallybehavesasaclosedsystemdescribedbytheLagrangian(11).Thisformalismrepresentsanewscenariointhestudyofthisveryinterestingsystem.TheLagrangian(11)describes,inthehyperbolicplane,thedissipativesystemofachargeinteractingwithitsownradiationfield,wherethe2-labeledsystemrepresentsthereservoirorheatbathcoupledtothe1-labedsystem.NotethatthisLagrangianissimilartotheonediscussedin[26](whichisaspecialnonrelativisticlimitofrelativisticmodeloftheparticlewithtorsioninvestigatedin[27]),butinthiscasewehaveapseudo-Euclideanmetricandtheradiation-dampingconstant,γ,isthecouplingconstantofaChern-Simons-liketerm.Thisformalismisimportantbecauseitallowsustostudythecanonicalquantizationofthemodel(seeRef.[28]),andtostudythesymmetriesofthemodelandtheirsupersymmetricversion(seeRef.[29]).Infutureworks,wewillstudytheintroductionofgaugeinteractionsintothemodel.
5Acknowledgement
ThisworkissupportedbyCNPqBrazilianResearchAgency.Inparticular,ACRMwouldliketoacknowledgetheCNPq.
4
References
[1]R.P.FeynmanandF.L.vernon,Jr.,Ann.Phys.24(1963)118.[2]A.OCaldeiraandA.J.Leggett,Phys.Rev.Lett.46,(1981)211.[3]A.OCaldeiraandA.J.Leggett,Ann.Phys.121,(1983)587.[4]A.OCaldeiraandA.J.Leggett,PhysicaA149,(1983)374.[5]W.G.UnruhandW.H.Zurek,Phys.Rev.D40,(1989)1071.
[6]W.S.Warren,S.L.HammesandJ.L.Bates,J.Chem.Phys.91,(1989)5895.[7]P.M.V.B.BaroneandA.O.Caldeira,Phys.Rev.A43,(1991)57.[8]A.C.R.MendesandF.I.Takakura,Phys.Rev.E64,(2001)056501.[9]R.BanerjeeandP.Mukherjee,quant-ph/0205143;quant-ph/0108055.[10]H.FeshbachandY.tikochinsky,Trans.N.Y.Acad.Sci.,SerII38(1977)44.
[11]W.Heitler,TheQuantumTheoryofRadiation(Dover,1970),3nded.;J.D.Jackson,Classical
Electrodynamics(Wiley,NewYork,1975),2nded.,Chaps.14,17;GilbertN.Plass,ReviewsofModernPhysics33,(1961)37.[12]R.Becker,ElectromagneticFieldsandInteractions(BlaidsellPublishingCo.,NewYork,1965)
Vol.1,Chaps.80,84,85,andVol.2,Chap.4.[13]H.A.Lorentz,TheTheoryofElectrons(Dover,NewYork,1952),2nded.,Secs.26-37,178-183.[14]R.P.Walker,“RadiationDamping”,Proceeding,GeneralAcceleratorPhysics,CERNGenebra
-CERN91-04,116-135(1990).[15]F.V.HartemannandA.K.Kerman,Phys.Rev.Lett.76,(1996)624.
[16]C.Bula,K.T.McDonald,E.J.Prebys,C.Bamber,S.Boege,T.Kotseroglou,A.C.Melissinos,
D.D.Meyerhofer,W.Ragg,D.L.Burke,R.C.Field,G.Horton-Smith,A.C.Odian,J.E.Spencer,D.Walz,S.C.Berridge,W.M.Bugg,K.ShmakovandA.W.Weidemann,Phys.Rev.Lett.76,(1996)3116.[17]F.Rohrlich,ClassicalChargedParticles(Addison-Wesley,RedwoodCity,1990).
[18]L.D.LandauandE.M.Lifshitz,TheClassicalTheoryofFields(Pergamon,Oxford,1975),
4thed.[19]F.Rohrlich,Am.J.Phys.65,(1997)1051.
[20]P.A.M.Dirac,Proc.R.Soc.London,Ser.A167,(1938)148.
[21]C.Teitelboim,D.VillaroelandCh.G.vanWeert,Riv.NuovoComento3,(1980)1903.[22]D.Villaroel,Phys.Rev.A55,(1997)3333.
5
[23]R.M.Santilli,FoundationofTheoreticalMechanicsI(Springer-Verlag,NewYork,1984)pp
119-137.[24]H.Bateman,Phys.Rev.38,(1931)815.
[25]M.Blasone,E.Graziano.O.K.PashaevandG.Vitiello,Ann.Phys.252,(1996)115.[26]J.Lukierski,P.C.StichelandW.J.Zakrzewski,Ann.Phys.260,(1997)224.[27]M.S.Plyushchay,Nucl.Phys.B362,(1991)54;Phys.Lett.B262,(1991)71.
[28]A.C.R.Mendes,C.Neves,W.OliveiraandF.I.Takakura,Eur.Phys.J.C45(2006)257.[29]A.C.R.Mendes,C.Neves,W.OliveiraandF.I.Takakura,J.Phys.A:Math.Gen.38,(2005)
9387.
6
因篇幅问题不能全部显示,请点此查看更多更全内容